| | |
| | | ts_bool constvolume(ts_vesicle *vesicle, ts_vertex *vtx_avoid, ts_double Vol, ts_double *retEnergy, ts_vertex **vtx_moved_retval, ts_vertex **vtx_backup){ |
| | | ts_vertex *vtx_moved; |
| | | ts_uint vtxind,i,j; |
| | | ts_uint Ntries=3; |
| | | ts_uint Ntries=100; |
| | | ts_vertex *backupvtx; |
| | | ts_double Rv, dh, dvol, volFirst, voldiff, oenergy,delta_energy; |
| | | backupvtx=(ts_vertex *)calloc(sizeof(ts_vertex),10); |
| | |
| | | for(i=0;i<Ntries;i++){ |
| | | vtxind=rand() % vesicle->vlist->n; |
| | | vtx_moved=vesicle->vlist->vtx[vtxind]; |
| | | /* chosen vertex must not be a nearest neighbour. TODO: probably must |
| | | /* chosen vertex must not be a nearest neighbour. WASTODO: probably must. |
| | | * DONE: solved below, when using different algorithm. |
| | | * extend search in case of bondflip */ |
| | | if(vtx_moved==vtx_avoid) continue; |
| | | /* if(vtx_moved==vtx_avoid) continue; |
| | | for(j=0;j<vtx_moved->neigh_no;j++){ |
| | | if(vtx_moved->neigh[j]==vtx_avoid) continue; |
| | | } |
| | | |
| | | */ |
| | | /* different check of nearest neighbour (and second nearest neighbour) check. |
| | | * Checking the distance between vertex and vertex to be moved to assure |
| | | * constant volume. Solves upper todo problem. */ |
| | | |
| | | if(vtx_distance_sq(vtx_moved,vtx_avoid)<16.0*vesicle->dmax){ |
| | | continue; |
| | | } |
| | | |
| | | memcpy((void *)&backupvtx[0],(void *)vtx_moved,sizeof(ts_vertex)); |
| | | |
| | | //move vertex in specified direction. first try, test move! |
| | |
| | | vtx_moved->y=vtx_moved->y*(1.0-dh/Rv); |
| | | vtx_moved->z=vtx_moved->z*(1.0-dh/Rv); |
| | | |
| | | |
| | | //SKIPPING FIRST CHECK of CONSTRAINTS. This is not a final move. |
| | | //check for constraints |
| | | if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ |
| | | /* if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ |
| | | vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | continue; |
| | | } |
| | | // continue; |
| | | break; |
| | | } */ |
| | | // All checks OK! |
| | | |
| | | for(j=0;j<vtx_moved->neigh_no;j++){ |
| | | memcpy((void *)&backupvtx[j+1],(void *)vtx_moved->neigh[j],sizeof(ts_vertex)); |
| | | } |
| | | dvol=0.0; |
| | | for(j=0;j<vtx_moved->tristar_no;j++){ |
| | | dvol-=vtx_moved->tristar[j]->volume; |
| | |
| | | vtx_moved->z=vtx_moved->z*(1-dh/Rv); |
| | | //check for constraints |
| | | if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ |
| | | for(j=0;j<vtx_moved->neigh_no;j++){ |
| | | memcpy((void *)vtx_moved->neigh[j],(void *)&backupvtx[j+1],sizeof(ts_vertex)); |
| | | } |
| | | vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | //also, restore normals |
| | | for(j=0;j<vtx_moved->tristar_no;j++) triangle_normal_vector(vtx_moved->tristar[j]); |
| | | continue; |
| | | // continue; |
| | | break; |
| | | } |
| | | |
| | | dvol=volFirst; |
| | |
| | | if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){ |
| | | //calculate energy, return change in energy... |
| | | // fprintf(stderr, "Constvol success! %e\n",voldiff); |
| | | for(j=0;j<vtx_moved->neigh_no;j++){ |
| | | memcpy((void *)&backupvtx[j+1],(void *)vtx_moved->neigh[j],sizeof(ts_vertex)); |
| | | } |
| | | |
| | | oenergy=vtx_moved->energy; |
| | | energy_vertex(vtx_moved); |
| | | delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy); |
| | |
| | | ts_bool constvolumerestore(ts_vertex *vtx_moved,ts_vertex *vtx_backup){ |
| | | ts_uint j; |
| | | memcpy((void *)vtx_moved,(void *)&vtx_backup[0],sizeof(ts_vertex)); |
| | | for(j=0;j<vtx_moved->neigh_no;j++){ |
| | | memcpy((void *)vtx_moved->neigh[j],(void *)&vtx_backup[j+1],sizeof(ts_vertex)); |
| | | } |
| | | for(j=0;j<vtx_moved->tristar_no;j++) triangle_normal_vector(vtx_moved->tristar[j]); |
| | | for(j=0;j<vtx_moved->neigh_no;j++){ |
| | | // memcpy((void *)vtx_moved->neigh[j],(void *)&vtx_backup[j+1],sizeof(ts_vertex)); |
| | | energy_vertex(vtx_moved->neigh[j]); |
| | | } |
| | | |
| | | free(vtx_backup); |
| | | return TS_SUCCESS; |