| | |
| | | ts_uint i; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | // ts_double delta_energy; |
| | | ts_double delta_energy; |
| | | ts_double costheta,sintheta,phi,r; |
| | | ts_double dist[2]; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx; |
| | | ts_vertex backupvtx,backupneigh[2]; |
| | | ts_bond backupbond[2]; |
| | | |
| | | //backup vertex: |
| | | memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | |
| | | memcpy(&backupbond[i],vtx->bond[i], sizeof(ts_bond)); |
| | | vtx->bond[i]->bond_length=sqrt(dist[i]); |
| | | bond_vector(vtx->bond[i]); |
| | | |
| | | } |
| | | |
| | | //backup neighboring vertices: |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy(&backupneigh[i],vtx->neigh[i], sizeof(ts_vertex)); |
| | | } |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | // delta_energy=0; |
| | | /* for(i=0;i<vtx->neigh_no;i++){ |
| | | // memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond)); |
| | | xp = vtx->neigh[i] |
| | | vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2)); |
| | | bond_energy(vtx->bond[i],poly); |
| | | delta_energy+= vtx->bond[i]->energy - backupbond[i].energy; |
| | | delta_energy=0; |
| | | |
| | | if(vtx->bond_no == 2){ |
| | | vtx->energy = -(vtx->bond[0]->x*vtx->bond[1]->x + vtx->bond[0]->y*vtx->bond[1]->y + vtx->bond[0]->z*vtx->bond[1]->z)/vtx->bond[0]->bond_length/vtx->bond[1]->bond_length; |
| | | delta_energy += vtx->energy - backupvtx.energy; |
| | | } |
| | | |
| | | if(vtx==poly->vlist->vtx[0]){ |
| | | delta_energy+= |
| | | (pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)- |
| | | pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k; |
| | | |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | if(vtx->neigh[i]->bond_no == 2){ |
| | | vtx->neigh[i]->energy = -(vtx->neigh[i]->bond[0]->x*vtx->neigh[i]->bond[1]->x + vtx->neigh[i]->bond[0]->y*vtx->neigh[i]->bond[1]->y + vtx->neigh[i]->bond[0]->z*vtx->neigh[i]->bond[1]->z)/vtx->neigh[i]->bond[0]->bond_length/vtx->neigh[i]->bond[1]->bond_length; |
| | | delta_energy += vtx->neigh[i]->energy - backupneigh[i].energy; |
| | | } |
| | | } |
| | | |
| | | // poly->k is filament persistence length (in units l_min) |
| | | delta_energy *= poly->k; |
| | | |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy(vtx->neigh[i],&backupneigh[i],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); |
| | | vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); |
| | | } |
| | | |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | */ |
| | | |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |