| | |
| | | ts_fprintf(stderr,"Starting initial_distribution on vesicle with %u shells!...\n",nshell); |
| | | ts_bool retval; |
| | | ts_uint no_vertices=5*nshell*nshell+2; |
| | | |
| | | |
| | | |
| | | ts_vesicle *vesicle=init_vesicle(no_vertices,ncmax1,ncmax2,ncmax3,stepsize); |
| | | |
| | | vesicle->nshell=nshell; |
| | | retval = vtx_set_global_values(vesicle); |
| | | retval = pentagonal_dipyramid_vertex_distribution(vesicle->vlist); |
| | |
| | | retval = init_triangles(vesicle); |
| | | retval = init_triangle_neighbours(vesicle); |
| | | retval = init_common_vertex_triangle_neighbours(vesicle); |
| | | retval = init_normal_vectors(vesicle->tlist); |
| | | retval = mean_curvature_and_energy(vesicle); |
| | | ts_fprintf(stderr,"initial_distribution finished!\n"); |
| | | if(retval); |
| | | return vesicle; |
| | | } |
| | | |
| | |
| | | ts_double dx,dy; // end loop prereq |
| | | |
| | | /* topmost vertex */ |
| | | vtx[1]->data->x=0.0; |
| | | vtx[1]->data->y=0.0; |
| | | vtx[1]->data->z=z0*(ts_double)nshell; |
| | | vtx[1]->x=0.0; |
| | | vtx[1]->y=0.0; |
| | | vtx[1]->z=z0*(ts_double)nshell; |
| | | |
| | | /* starting from to in circular order on pentagrams */ |
| | | for(i=1;i<=nshell;i++){ |
| | | n0=2+5*i*(i-1)/2; //-1 would be for the reason that C index starts from 0 |
| | | vtx[n0]->data->x=0.0; |
| | | vtx[n0]->data->y=(ts_double)i*xl0; |
| | | vtx[n0+i]->data->x=vtx[n0]->data->y*s1; |
| | | vtx[n0+i]->data->y=vtx[n0]->data->y*c1; |
| | | vtx[n0+2*i]->data->x=vtx[n0]->data->y*s2; |
| | | vtx[n0+2*i]->data->y=vtx[n0]->data->y*c2; |
| | | vtx[n0+3*i]->data->x=-vtx[n0+2*i]->data->x; |
| | | vtx[n0+3*i]->data->y=vtx[n0+2*i]->data->y; |
| | | vtx[n0+4*i]->data->x=-vtx[n0+i]->data->x; |
| | | vtx[n0+4*i]->data->y=vtx[n0+i]->data->y; |
| | | vtx[n0]->x=0.0; |
| | | vtx[n0]->y=(ts_double)i*xl0; |
| | | vtx[n0+i]->x=vtx[n0]->y*s1; |
| | | vtx[n0+i]->y=vtx[n0]->y*c1; |
| | | vtx[n0+2*i]->x=vtx[n0]->y*s2; |
| | | vtx[n0+2*i]->y=vtx[n0]->y*c2; |
| | | vtx[n0+3*i]->x=-vtx[n0+2*i]->x; |
| | | vtx[n0+3*i]->y=vtx[n0+2*i]->y; |
| | | vtx[n0+4*i]->x=-vtx[n0+i]->x; |
| | | vtx[n0+4*i]->y=vtx[n0+i]->y; |
| | | } |
| | | |
| | | /* vertexes on the faces of the dipyramid */ |
| | | for(i=1;i<=nshell;i++){ |
| | | n0=2+5*i*(i-1)/2; // -1 would be because of C! |
| | | for(j=1;j<=i-1;j++){ |
| | | dx=(vtx[n0]->data->x-vtx[n0+4*i]->data->x)/(ts_double)i; |
| | | dy=(vtx[n0]->data->y-vtx[n0+4*i]->data->y)/(ts_double)i; |
| | | vtx[n0+4*i+j]->data->x=(ts_double)j*dx+vtx[n0+4*i]->data->x; |
| | | vtx[n0+4*i+j]->data->y=(ts_double)j*dy+vtx[n0+4*i]->data->y; |
| | | dx=(vtx[n0]->x-vtx[n0+4*i]->x)/(ts_double)i; |
| | | dy=(vtx[n0]->y-vtx[n0+4*i]->y)/(ts_double)i; |
| | | vtx[n0+4*i+j]->x=(ts_double)j*dx+vtx[n0+4*i]->x; |
| | | vtx[n0+4*i+j]->y=(ts_double)j*dy+vtx[n0+4*i]->y; |
| | | } |
| | | for(k=0;k<=3;k++){ // I would be worried about zero starting of for |
| | | dx=(vtx[n0+(k+1)*i]->data->x - vtx[n0+k*i]->data->x)/(ts_double) i; |
| | | dy=(vtx[n0+(k+1)*i]->data->y - vtx[n0+k*i]->data->y)/(ts_double) i; |
| | | dx=(vtx[n0+(k+1)*i]->x - vtx[n0+k*i]->x)/(ts_double) i; |
| | | dy=(vtx[n0+(k+1)*i]->y - vtx[n0+k*i]->y)/(ts_double) i; |
| | | for(j=1; j<=i-1;j++){ |
| | | vtx[n0+k*i+j]->data->x= (ts_double)j*dx+vtx[n0+k*i]->data->x; |
| | | vtx[n0+k*i+j]->data->y= (ts_double)j*dy+vtx[n0+k*i]->data->y; |
| | | vtx[n0+k*i+j]->x= (ts_double)j*dx+vtx[n0+k*i]->x; |
| | | vtx[n0+k*i+j]->y= (ts_double)j*dy+vtx[n0+k*i]->y; |
| | | } |
| | | } |
| | | } |
| | |
| | | for(i=1;i<=nshell;i++){ |
| | | n0= 2+ 5*i*(i-1)/2; |
| | | for(j=0;j<=5*i-1;j++){ |
| | | vtx[n0+j]->data->z= z0*(ts_double)(nshell-i); // I would be worried about zero starting of for |
| | | vtx[n0+j]->z= z0*(ts_double)(nshell-i); // I would be worried about zero starting of for |
| | | } |
| | | } |
| | | |
| | | /* for botom part of dipyramide we calculate the positions of vertices */ |
| | | for(i=2+5*nshell*(nshell+1)/2;i<=vlist->n;i++){ |
| | | vtx[i]->data->x=vtx[vlist->n - i +1]->data->x; |
| | | vtx[i]->data->y=vtx[vlist->n - i +1]->data->y; |
| | | vtx[i]->data->z=-vtx[vlist->n - i +1]->data->z; |
| | | vtx[i]->x=vtx[vlist->n - i +1]->x; |
| | | vtx[i]->y=vtx[vlist->n - i +1]->y; |
| | | vtx[i]->z=-vtx[vlist->n - i +1]->z; |
| | | } |
| | | |
| | | for(i=1;i<=vlist->n;i++){ |
| | |
| | | ts_double direct; // Something, dont know what, but could be normal of some kind |
| | | for(i=1;i<=vlist->n;i++){ |
| | | k++; // WHY i IS NOT GOOD?? |
| | | vtx_add_cneighbour(blist,tvtx[k], tvtx[vtx[i]->data->neigh[0]->idx+1]); //always add 1st |
| | | vtx_add_cneighbour(blist,tvtx[k], tvtx[vtx[i]->neigh[0]->idx+1]); //always add 1st |
| | | jjj=1; |
| | | jj=1; |
| | | for(l=2;l<=vtx[i]->data->neigh_no;l++){ |
| | | for(j=2;j<=vtx[i]->data->neigh_no;j++){ |
| | | dist2=vtx_distance_sq(vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); |
| | | direct=vtx_direct(vtx[i],vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); |
| | | for(l=2;l<=vtx[i]->neigh_no;l++){ |
| | | for(j=2;j<=vtx[i]->neigh_no;j++){ |
| | | dist2=vtx_distance_sq(vtx[i]->neigh[j-1],vtx[i]->neigh[jj-1]); |
| | | direct=vtx_direct(vtx[i],vtx[i]->neigh[j-1],vtx[i]->neigh[jj-1]); |
| | | // TODO: check if fabs can be used with all floating point types!! |
| | | if( (fabs(dist2-A0*A0)<=eps) && (direct>0.0) && (j!=jjj) ){ |
| | | vtx_add_cneighbour(blist,tvtx[k],tvtx[vtx[i]->data->neigh[j-1]->idx+1]); |
| | | vtx_add_cneighbour(blist,tvtx[k],tvtx[vtx[i]->neigh[j-1]->idx+1]); |
| | | jjj=jj; |
| | | jj=j; |
| | | break; |
| | |
| | | ts_uint i,j,k; |
| | | for(i=1;i<=vlist->n;i++){ |
| | | for(j=i+1;j<=vlist->n;j++){ |
| | | for(k=0;k<vtx[i]->data->neigh_no;k++){ // has changed 0 to < instead of 1 and <= |
| | | if(vtx[i]->data->neigh[k]==vtx[j]){ //if addresses matches it is the same |
| | | for(k=0;k<vtx[i]->neigh_no;k++){ // has changed 0 to < instead of 1 and <= |
| | | if(vtx[i]->neigh[k]==vtx[j]){ //if addresses matches it is the same |
| | | bond_add(blist,vtx[i],vtx[j]); |
| | | break; |
| | | } |
| | |
| | | ts_double eps=0.001; // can we use EPS from math.h? |
| | | k=0; |
| | | for(i=1;i<=vesicle->vlist->n;i++){ |
| | | for(j=1;j<=vtx[i]->data->neigh_no;j++){ |
| | | for(jj=1;jj<=vtx[i]->data->neigh_no;jj++){ |
| | | for(j=1;j<=vtx[i]->neigh_no;j++){ |
| | | for(jj=1;jj<=vtx[i]->neigh_no;jj++){ |
| | | // ts_fprintf(stderr,"%u: (%u,%u) neigh_no=%u ",i,j,jj,vtx[i].neigh_no); |
| | | // ts_fprintf(stderr,"%e, %e",vtx[i].neigh[j-1]->x,vtx[i].neigh[jj-1]->x); |
| | | dist=vtx_distance_sq(vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); |
| | | direct=vtx_direct(vtx[i],vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); |
| | | if(fabs(dist-A0*A0)<=eps && direct < 0.0 && vtx[i]->data->neigh[j-1]->idx+1 > i && vtx[i]->data->neigh[jj-1]->idx+1 >i){ |
| | | triangle_add(tlist,vtx[i],vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); |
| | | dist=vtx_distance_sq(vtx[i]->neigh[j-1],vtx[i]->neigh[jj-1]); |
| | | direct=vtx_direct(vtx[i],vtx[i]->neigh[j-1],vtx[i]->neigh[jj-1]); |
| | | // TODO: same as above |
| | | if(fabs(dist-A0*A0)<=eps && direct < 0.0 && vtx[i]->neigh[j-1]->idx+1 > i && vtx[i]->neigh[jj-1]->idx+1 >i){ |
| | | triangle_add(tlist,vtx[i],vtx[i]->neigh[j-1],vtx[i]->neigh[jj-1]); |
| | | } |
| | | } |
| | | } |
| | |
| | | for(i=0;i<tlist->n;i++){ |
| | | k=0; |
| | | for(j=0;j<3;j++){ |
| | | if(tlist->tria[i]->data->vertex[j]!=NULL) |
| | | if(tlist->tria[i]->vertex[j]!=NULL) |
| | | k++; |
| | | } |
| | | if(k!=3){ |
| | | fatal("Some triangles has less than 3 vertices..",4); |
| | | fatal("Some triangles have less than 3 vertices..",4); |
| | | } |
| | | } |
| | | if(tlist->n!=2*(vesicle->vlist->n -2)){ |
| | |
| | | ts_triangle **tria=tlist->tria -1; |
| | | nobo=0; |
| | | for(i=1;i<=tlist->n;i++){ |
| | | i1=tria[i]->data->vertex[0]; |
| | | i2=tria[i]->data->vertex[1]; |
| | | i3=tria[i]->data->vertex[2]; |
| | | i1=tria[i]->vertex[0]; |
| | | i2=tria[i]->vertex[1]; |
| | | i3=tria[i]->vertex[2]; |
| | | for(j=1;j<=tlist->n;j++){ |
| | | if(j==i) continue; |
| | | j1=tria[j]->data->vertex[0]; |
| | | j2=tria[j]->data->vertex[1]; |
| | | j3=tria[j]->data->vertex[2]; |
| | | j1=tria[j]->vertex[0]; |
| | | j2=tria[j]->vertex[1]; |
| | | j3=tria[j]->vertex[2]; |
| | | if((i1==j1 && i3==j2) || (i1==j2 && i3==j3) || (i1==j3 && i3==j1)){ |
| | | triangle_add_neighbour(tria[i],tria[j]); |
| | | nobo++; |
| | |
| | | } |
| | | } |
| | | for(i=1;i<=tlist->n;i++){ |
| | | i1=tria[i]->data->vertex[0]; |
| | | i2=tria[i]->data->vertex[1]; |
| | | i3=tria[i]->data->vertex[2]; |
| | | i1=tria[i]->vertex[0]; |
| | | i2=tria[i]->vertex[1]; |
| | | i3=tria[i]->vertex[2]; |
| | | for(j=1;j<=tlist->n;j++){ |
| | | if(j==i) continue; |
| | | j1=tria[j]->data->vertex[0]; |
| | | j2=tria[j]->data->vertex[1]; |
| | | j3=tria[j]->data->vertex[2]; |
| | | j1=tria[j]->vertex[0]; |
| | | j2=tria[j]->vertex[1]; |
| | | j3=tria[j]->vertex[2]; |
| | | if((i1==j1 && i2==j3) || (i1==j3 && i2==j2) || (i1==j2 && i2==j1)){ |
| | | triangle_add_neighbour(tria[i],tria[j]); |
| | | nobo++; |
| | |
| | | } |
| | | } |
| | | for(i=1;i<=tlist->n;i++){ |
| | | i1=tria[i]->data->vertex[0]; |
| | | i2=tria[i]->data->vertex[1]; |
| | | i3=tria[i]->data->vertex[2]; |
| | | i1=tria[i]->vertex[0]; |
| | | i2=tria[i]->vertex[1]; |
| | | i3=tria[i]->vertex[2]; |
| | | for(j=1;j<=tlist->n;j++){ |
| | | if(j==i) continue; |
| | | j1=tria[j]->data->vertex[0]; |
| | | j2=tria[j]->data->vertex[1]; |
| | | j3=tria[j]->data->vertex[2]; |
| | | j1=tria[j]->vertex[0]; |
| | | j2=tria[j]->vertex[1]; |
| | | j3=tria[j]->vertex[2]; |
| | | if((i2==j1 && i3==j3) || (i2==j3 && i3==j2) || (i2==j2 && i3==j1)){ |
| | | triangle_add_neighbour(tria[i],tria[j]); |
| | | nobo++; |
| | |
| | | ts_triangle **tria=tlist->tria -1; |
| | | |
| | | for(i=1;i<=vesicle->vlist->n;i++){ |
| | | for(j=1;j<=vtx[i]->data->neigh_no;j++){ |
| | | k1=vtx[i]->data->neigh[j-1]; |
| | | for(j=1;j<=vtx[i]->neigh_no;j++){ |
| | | k1=vtx[i]->neigh[j-1]; |
| | | jp=j+1; |
| | | if(j == vtx[i]->data->neigh_no) jp=1; |
| | | k2=vtx[i]->data->neigh[jp-1]; |
| | | if(j == vtx[i]->neigh_no) jp=1; |
| | | k2=vtx[i]->neigh[jp-1]; |
| | | for(k=1;k<=tlist->n;k++){ // VERY NON-OPTIMAL!!! too many loops (vlist.n * vtx.neigh * tlist.n )! |
| | | k3=tria[k]->data->vertex[0]; |
| | | k4=tria[k]->data->vertex[1]; |
| | | k5=tria[k]->data->vertex[2]; |
| | | k3=tria[k]->vertex[0]; |
| | | k4=tria[k]->vertex[1]; |
| | | k5=tria[k]->vertex[2]; |
| | | // ts_fprintf(stderr,"%u %u: k=(%u %u %u)\n",k1,k2,k3,k4,k5); |
| | | if((vtx[i]==k3 && k1==k4 && k2==k5) || |
| | | (vtx[i]==k4 && k1==k5 && k2==k3) || |
| | |
| | | |
| | | //TODO: probably something wrong with neighbour distribution. |
| | | // if(vtx[i]==k3 || vtx[i]==k4 || vtx[i]==k5){ |
| | | if(i==6) ts_fprintf(stdout, "Vtx[%u] > Added to tristar!\n",i); |
| | | // if(i==6) ts_fprintf(stdout, "Vtx[%u] > Added to tristar!\n",i); |
| | | vertex_add_tristar(vtx[i],tria[k]); |
| | | } |
| | | } |