| | |
| | | #include "triangle.h" |
| | | #include<math.h> |
| | | |
| | | /** @brief Prepares the list for triangles. |
| | | * @returns pointer to empty data structure for maintaining triangle list. |
| | | * |
| | | * Create empty list for holding the information on triangles. Triangles are |
| | | * added later on with triangle_add(). |
| | | * Returns pointer to the tlist datastructure it has created. This pointer must |
| | | * be assigned to some variable or it will be lost. |
| | | * |
| | | * |
| | | * Example of usage: |
| | | * ts_triangle_list *tlist; |
| | | * tlist=triangle_data_free(); |
| | | * |
| | | * Initalized data structure for holding the information on triangles. |
| | | * |
| | | */ |
| | | ts_triangle_list *init_triangle_list(){ |
| | | ts_triangle_list *tlist=(ts_triangle_list *)malloc(sizeof(ts_triangle_list)); |
| | | tlist->n = 0; |
| | |
| | | return tlist; |
| | | } |
| | | |
| | | |
| | | /** @brief Add the triangle to the triangle list and create necessary data |
| | | * structures. |
| | | * @param *tlist is a pointer to triangle list where triangle should be created |
| | | * @param *vtx1, *vtx2, *vtx3 are the three vertices defining the triangle |
| | | * @returns pointer to the newly created triangle on success and NULL if |
| | | * triangle could not be created. It breaks program execution if memory |
| | | * allocation of triangle list can't be done. |
| | | * |
| | | * Add the triangle ts_triangle to the ts_triangle_list. |
| | | * The triangle list is resized, the ts_triangle is allocated and |
| | | * triangle data is zeroed. Returned pointer to newly |
| | | * created triangle doesn't need assigning, since it is |
| | | * referenced by triangle list. |
| | | * |
| | | * WARNING: Function can be accelerated a bit by removing the NULL checks. |
| | | * However the time gained by removal doesn't justify the time spent by |
| | | * debugging stupid NULL pointers. |
| | | * |
| | | * Example of usage: |
| | | * triangle_add(tlist, vlist->vtx[1], vlist->vtx[2], vlist->vtx[3]); |
| | | * |
| | | * Creates a triangle with given vertices and puts it into the list. |
| | | * |
| | | */ |
| | | ts_triangle *triangle_add(ts_triangle_list *tlist, ts_vertex *vtx1, ts_vertex *vtx2, ts_vertex *vtx3){ |
| | | if(vtx1==NULL || vtx2==NULL || vtx3==NULL){ |
| | | return NULL; |
| | |
| | | |
| | | tlist->tria[tlist->n-1]=(ts_triangle *)calloc(1,sizeof(ts_triangle)); |
| | | if(tlist->tria[tlist->n-1]==NULL) fatal("Cannot reallocate memory for additional ts_triangle.",5); |
| | | tlist->tria[tlist->n-1]->data=(ts_triangle_data *)calloc(1,sizeof(ts_triangle_data)); |
| | | |
| | | //NOW insert vertices! |
| | | tlist->tria[tlist->n - 1]->idx=tlist->n-1; |
| | | tlist->tria[tlist->n - 1]->data->vertex[0]=vtx1; |
| | | tlist->tria[tlist->n - 1]->data->vertex[1]=vtx2; |
| | | tlist->tria[tlist->n - 1]->data->vertex[2]=vtx3; |
| | | tlist->tria[tlist->n - 1]->vertex[0]=vtx1; |
| | | tlist->tria[tlist->n - 1]->vertex[1]=vtx2; |
| | | tlist->tria[tlist->n - 1]->vertex[2]=vtx3; |
| | | return tlist->tria[tlist->n-1]; |
| | | } |
| | | |
| | | /** @brief Add the neigbour to triangles. |
| | | * @param *tria is a first triangle. |
| | | * @param *ntria is a second triangle. |
| | | * @returns TS_SUCCES on sucessful adition to the list, TS_FAIL if triangles |
| | | * are NULL and breaks execution FATALY if memory allocation error occurs. |
| | | * |
| | | * Add the neigbour to the list of neighbouring triangles. The |
| | | * neighbouring triangles are those, who share two vertices and corresponding |
| | | * bond. Function resizes |
| | | * the list and adds the pointer to neighbour. It receives two arguments of |
| | | * ts_triangle type. It then adds second triangle to the list of first |
| | | * triangle, but not the opposite. Upon |
| | | * success it returns TS_SUCCESS, upon detecting NULL pointers |
| | | * returns TS_FAIL and it FATALY ends when the data structure |
| | | * cannot be resized. |
| | | * |
| | | * |
| | | * WARNING: Function can be accelerated a bit by removing the NULL checks. |
| | | * However the time gained by removal doesn't justify the time spent by |
| | | * debugging stupid NULL pointers. |
| | | * |
| | | * Example of usage: |
| | | * triangle_add_neighbour(tlist->tria[3], tlist->tria[4]); |
| | | * |
| | | * Triangle 4 is a neighbour of triangle 3, but (strangely) not the |
| | | * oposite. The function should be called again with the changed order of |
| | | * triangles to make neighbourship mutual. |
| | | * |
| | | */ |
| | | |
| | | ts_bool triangle_add_neighbour(ts_triangle *tria, ts_triangle *ntria){ |
| | | if(tria==NULL || ntria==NULL) return TS_FAIL; |
| | | /*TODO: check if the neighbour already exists! Now there is no such check |
| | | * because of the performance issue. */ |
| | | tria->data->neigh_no++; |
| | | tria->data->neigh=realloc(tria->data->neigh,tria->data->neigh_no*sizeof(ts_triangle *)); |
| | | if(tria->data->neigh == NULL) |
| | | tria->neigh_no++; |
| | | tria->neigh=realloc(tria->neigh,tria->neigh_no*sizeof(ts_triangle *)); |
| | | if(tria->neigh == NULL) |
| | | fatal("Reallocation of memory failed during insertion of triangle neighbour in triangle_add_neighbour",3); |
| | | tria->data->neigh[tria->data->neigh_no-1]=ntria; |
| | | |
| | | /* we repeat the procedure for the neighbour */ |
| | | ntria->data->neigh_no++; |
| | | ntria->data->neigh=realloc(ntria->data->neigh,ntria->data->neigh_no*sizeof(ts_triangle *)); |
| | | if(ntria->data->neigh == NULL) |
| | | fatal("Reallocation of memory failed during insertion of triangle neighbour in triangle_add_neighbour",3); |
| | | ntria->data->neigh[ntria->data->neigh_no-1]=tria; |
| | | tria->neigh[tria->neigh_no-1]=ntria; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | /** @brief Remove the neigbours from triangle. |
| | | * @param *tria is a first triangle. |
| | | * @param *ntria is neighbouring triangle. |
| | | * @returns TS_SUCCESS on successful removal, TS_FAIL if triangles are not |
| | | * neighbours and it breaks program execution FATALY if memory allocation |
| | | * problem occurs. |
| | | * |
| | | * Removes the neigbour from the list of neighbouring triangles. The |
| | | * neighbouring triangles are those, who share two vertices and corresponding |
| | | * bond. Function resizes |
| | | * the list and deletes the pointer to neighbour. It receives two arguments of |
| | | * ts_triangle type. It then mutually removes triangles from eachouther |
| | | * neighbour list. Upon |
| | | * success it returns TS_SUCCESS, upon failure to find the triangle in the |
| | | * neighbour list returns TS_FAIL. It FATALY breaks program execution when the datastructure |
| | | * cannot be resized due to memory constrain problems. |
| | | * |
| | | * WARNING: The function doesn't check whether the pointer is NULL or invalid. It is the |
| | | * job of programmer to make sure the pointer is valid. |
| | | * |
| | | * WARNING: Function is slow. Do not use it often! |
| | | * |
| | | * Example of usage: |
| | | * triangle_remove_neighbour(tlist->tria[3], tlist->tria[4]); |
| | | * |
| | | * Triangles 3 and 4 are not neighbours anymore. |
| | | * |
| | | */ |
| | | ts_bool triangle_remove_neighbour(ts_triangle *tria, ts_triangle *ntria){ |
| | | ts_uint i,j=0; |
| | | if(tria==NULL || ntria==NULL) return TS_FAIL; |
| | | |
| | | for(i=0;i<tria->data->neigh_no;i++){ |
| | | if(tria->data->neigh[i]!=ntria){ |
| | | tria->data->neigh[j]=tria->data->neigh[i]; |
| | | for(i=0;i<tria->neigh_no;i++){ |
| | | if(tria->neigh[i]!=ntria){ |
| | | tria->neigh[j]=tria->neigh[i]; |
| | | j++; |
| | | } |
| | | } |
| | | if(j==i) { |
| | | return TS_FAIL; |
| | | //fatal("In triangle_remove_neighbour: Specified neighbour does not exist for given triangle",3); |
| | | } |
| | | tria->data->neigh_no--; |
| | | tria->data->neigh=(ts_triangle **)realloc(tria->data->neigh,tria->data->neigh_no*sizeof(ts_triangle *)); |
| | | if(tria->data->neigh == NULL){ |
| | | tria->neigh_no--; |
| | | tria->neigh=(ts_triangle **)realloc(tria->neigh,tria->neigh_no*sizeof(ts_triangle *)); |
| | | if(tria->neigh == NULL){ |
| | | fprintf(stderr,"Ooops: tria->neigh_no=%d\n",tria->neigh_no); |
| | | fatal("Reallocation of memory failed during removal of vertex neighbour in triangle_remove_neighbour",100); |
| | | } |
| | | /* we repeat the procedure for neighbour */ |
| | | for(i=0;i<ntria->data->neigh_no;i++){ |
| | | if(ntria->data->neigh[i]!=tria){ |
| | | ntria->data->neigh[j]=ntria->data->neigh[i]; |
| | | j=0; |
| | | for(i=0;i<ntria->neigh_no;i++){ |
| | | if(ntria->neigh[i]!=tria){ |
| | | ntria->neigh[j]=ntria->neigh[i]; |
| | | j++; |
| | | } |
| | | } |
| | | if(j==i) { |
| | | return TS_FAIL; |
| | | //fatal("In triangle_remove_neighbour: Specified neighbour does not exist for given triangle",3); |
| | | } |
| | | ntria->data->neigh_no--; |
| | | ntria->data->neigh=(ts_triangle **)realloc(ntria->data->neigh,ntria->data->neigh_no*sizeof(ts_triangle *)); |
| | | if(ntria->data->neigh == NULL){ |
| | | ntria->neigh_no--; |
| | | ntria->neigh=(ts_triangle **)realloc(ntria->neigh,ntria->neigh_no*sizeof(ts_triangle *)); |
| | | if(ntria->neigh == NULL){ |
| | | fprintf(stderr,"Ooops: ntria->neigh_no=%d\n",ntria->neigh_no); |
| | | fatal("Reallocation of memory failed during removal of vertex neighbour in triangle_remove_neighbour",100); |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | /** @brief Calculates normal vector of the triangle, its corresponding area and volume. |
| | | * @param *tria is a triangle pointer for which normal, area and volume is |
| | | * to be calculated. |
| | | * @returns TS_SUCCESS on success. (always) |
| | | * |
| | | * Calculate normal vector of the triangle (xnorm, ynorm and znorm) and stores |
| | | * information. At the same time |
| | | * triangle area is determined, since we already have the normal and volume of |
| | | * triangular pyramid with given triangle as a base and vesicle centroid as a |
| | | * tip. |
| | | * |
| | | * Function receives one argument of type ts_triangle. It should be corectly |
| | | * initialized. The |
| | | * result is stored in triangle->xnorm, triangle->ynorm, triangle->znorm. |
| | | * Area and volume are stored into triangle->area and triangle->volume. |
| | | * Returns TS_SUCCESS on completion. |
| | | * |
| | | * NOTE: Function uses math.h library. Function pow implementation is selected |
| | | * accordind to the used TS_DOUBLE_* definition set in general.h, so it should |
| | | * be compatible with any type of floating point precision. |
| | | * |
| | | * Example of usage: |
| | | * triangle_normal_vector(tlist->tria[3]); |
| | | * |
| | | * Computes normals and stores information into tlist->tria[3]->xnorm, |
| | | * tlist->tria[3]->ynorm, tlist->tria[3]->znorm tlist->tria[3]->area and |
| | | * tlist->tria[3]->volume. |
| | | * |
| | | */ |
| | | ts_bool triangle_normal_vector(ts_triangle *tria){ |
| | | ts_double x21,x31,y21,y31,z21,z31,xden; |
| | | x21=tria->data->vertex[1]->data->x - tria->data->vertex[0]->data->x; |
| | | x31=tria->data->vertex[2]->data->x - tria->data->vertex[0]->data->x; |
| | | y21=tria->data->vertex[1]->data->y - tria->data->vertex[0]->data->y; |
| | | y31=tria->data->vertex[2]->data->y - tria->data->vertex[0]->data->y; |
| | | z21=tria->data->vertex[1]->data->z - tria->data->vertex[0]->data->z; |
| | | z31=tria->data->vertex[2]->data->z - tria->data->vertex[0]->data->z; |
| | | x21=tria->vertex[1]->x - tria->vertex[0]->x; |
| | | x31=tria->vertex[2]->x - tria->vertex[0]->x; |
| | | y21=tria->vertex[1]->y - tria->vertex[0]->y; |
| | | y31=tria->vertex[2]->y - tria->vertex[0]->y; |
| | | z21=tria->vertex[1]->z - tria->vertex[0]->z; |
| | | z31=tria->vertex[2]->z - tria->vertex[0]->z; |
| | | |
| | | tria->data->xnorm=y21*z31 - z21*y31; |
| | | tria->data->ynorm=z21*x31 - x21*z31; |
| | | tria->data->znorm=x21*y31 - y21*x31; |
| | | xden=tria->data->xnorm*tria->data->xnorm + |
| | | tria->data->ynorm*tria->data->ynorm + |
| | | tria->data->znorm*tria->data->znorm; |
| | | tria->xnorm=y21*z31 - z21*y31; |
| | | tria->ynorm=z21*x31 - x21*z31; |
| | | tria->znorm=x21*y31 - y21*x31; |
| | | xden=tria->xnorm*tria->xnorm + |
| | | tria->ynorm*tria->ynorm + |
| | | tria->znorm*tria->znorm; |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | xden=sqrt(xden); |
| | | #endif |
| | |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | xden=sqrtl(xden); |
| | | #endif |
| | | tria->data->xnorm=tria->data->xnorm/xden; |
| | | tria->data->ynorm=tria->data->ynorm/xden; |
| | | tria->data->znorm=tria->data->znorm/xden; |
| | | tria->xnorm=tria->xnorm/xden; |
| | | tria->ynorm=tria->ynorm/xden; |
| | | tria->znorm=tria->znorm/xden; |
| | | |
| | | /* Here it is an excellent point to recalculate volume of the triangle and |
| | | * store it into datastructure. Volume is required at least by constant volume |
| | | * calculation of vertex move and bondflip and spherical harmonics. */ |
| | | tria->volume=(tria->vertex[0]->x+ tria->vertex[1]->x + tria->vertex[2]->x) * tria->xnorm + |
| | | (tria->vertex[0]->y+ tria->vertex[1]->y + tria->vertex[2]->y) * tria->ynorm + |
| | | (tria->vertex[0]->z+ tria->vertex[1]->z + tria->vertex[2]->z) * tria->znorm; |
| | | tria->volume=-xden*tria->volume/18.0; |
| | | /* Also, area can be calculated in each triangle */ |
| | | tria->area=xden/2; |
| | | |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool triangle_data_free(ts_triangle_data *data){ |
| | | if(data->neigh!=NULL) free(data->neigh); |
| | | free(data); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /** @brief Frees the memory allocated for data structure of triangle list |
| | | * @param *tlist is a pointer to datastructure triangle list to be freed. |
| | | * @returns TS_SUCCESS on success (always). |
| | | * |
| | | * Function frees the memory of ts_triangle_list previously allocated. It |
| | | * accepts one argument, the address of data structure. It destroys all |
| | | * ts_triangle's in the list with underlying data (by calling |
| | | * triangle_data_free()), and the list itself. |
| | | * |
| | | * Should be used eveytime the deletion of triangle list (created by |
| | | * init_triangle_list() and altered by add_triangle() or remove_triangle()) is desired. |
| | | * |
| | | * WARNING: The function doesn't check whether the pointer is NULL or invalid. It is the |
| | | * job of programmer to make sure the pointer is valid. |
| | | * |
| | | * WARNING: Careful when destroying triangle lists. There could be pointers to |
| | | * that information remaining in structures like vertex_data. This pointers |
| | | * will be rendered invalid by this operation and should not be used anymore. |
| | | * |
| | | * Example of usage: |
| | | * triangle_list_free(tlist); |
| | | * |
| | | * Clears all the information on triangles. |
| | | * |
| | | */ |
| | | ts_bool triangle_list_free(ts_triangle_list *tlist){ |
| | | ts_uint i; |
| | | for(i=0;i<tlist->n;i++){ |
| | | triangle_data_free(tlist->tria[i]->data); |
| | | if(tlist->tria[i]->neigh!=NULL) free(tlist->tria[i]->neigh); |
| | | free(tlist->tria[i]); |
| | | } |
| | | free(tlist->tria); |