| | |
| | | /* vim: set ts=4 sts=4 sw=4 noet : */ |
| | | #include<stdlib.h> |
| | | #include<math.h> |
| | | #include "general.h" |
| | |
| | | #include "energy.h" |
| | | #include "timestep.h" |
| | | #include "cell.h" |
| | | //#include "io.h" |
| | | #include "io.h" |
| | | #include<stdio.h> |
| | | #include "vertexmove.h" |
| | | #include <string.h> |
| | | #include "constvol.h" |
| | | #include "plugins.h" |
| | | |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_double dist; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | ts_double delta_energy, delta_energy_cv,oenergy,dvol=0.0, darea=0.0; |
| | | ts_double delta_energy, oenergy,dvol=0.0, darea=0.0, dstretchenergy=0.0; |
| | | ts_double costheta,sintheta,phi,r; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx[20], *constvol_vtx_moved=NULL, *constvol_vtx_backup=NULL; |
| | | memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); |
| | | ts_vertex backupvtx[20], *constvol_vtx_moved=NULL, *constvol_vtx_backup=NULL; |
| | | memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //Some stupid tests for debugging cell occupation! |
| | | /* cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | if(vesicle->clist->cell[cellidx]==vtx->cell){ |
| | | fprintf(stderr,"Idx match!\n"); |
| | | } else { |
| | | fprintf(stderr,"***** Idx don't match!\n"); |
| | | fatal("ENding.",1); |
| | | } |
| | | */ |
| | | |
| | | //temporarly moving the vertex |
| | | // vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); |
| | | // vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); |
| | | // vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | dist=vtx_distance_sq(vtx,vtx->neigh[i]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | /* Entry point for plugin vm_hard_constraint() function */ |
| | | vesicle->plist->pointer=vesicle->plist->chain->vm_hard_constraint; |
| | | while(vesicle->plist->pointer!=NULL){ |
| | | retval = vesicle->plist->pointer->plugin->function->vm_hard_constraint(vesicle,vtx, &backupvtx[0]); |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // Distance with grafted poly-vertex check: |
| | | if(vtx->grafted_poly!=NULL){ |
| | | dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | vesicle->plist->pointer=vesicle->plist->pointer->next; |
| | | } |
| | | /* End of vm_hard_constraint() */ |
| | | |
| | | // TODO: Maybe faster if checks only nucleus-neighboring cells |
| | | // Nucleus penetration check: |
| | | if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | /* Backuping the neighbours */ |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); |
| | | } |
| | | |
| | | if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch>0){ |
| | | for(i=0;i<vtx->tristar_no;i++) dvol-=vtx->tristar[i]->volume; |
| | | /* Entry point for plugin vm_energy_before_prepare() */ |
| | | |
| | | vesicle->plist->pointer=vesicle->plist->chain->vm_energy_before_prepare; |
| | | while(vesicle->plist->pointer!=NULL){ |
| | | vesicle->plist->pointer->plugin->function->vm_energy_before_prepare(vesicle, vtx); |
| | | vesicle->plist->pointer=vesicle->plist->pointer->next; |
| | | } |
| | | |
| | | if(vesicle->tape->constareaswitch==2){ |
| | | for(i=0;i<vtx->tristar_no;i++) darea-=vtx->tristar[i]->area; |
| | | |
| | | } |
| | | |
| | | //stretching energy 1 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | for(i=0;i<vtx->tristar_no;i++) dstretchenergy-=vtx->tristar[i]->energy; |
| | | } |
| | | delta_energy=0; |
| | | |
| | | |
| | | |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume in the beginning=%1.16e\n", vesicle->volume); |
| | | |
| | |
| | | delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); |
| | | } |
| | | |
| | | if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch >0){ |
| | | for(i=0;i<vtx->tristar_no;i++) dvol+=vtx->tristar[i]->volume; |
| | | if(vesicle->pswitch==1) delta_energy-=vesicle->pressure*dvol; |
| | | }; |
| | | |
| | | /* Entry point for plugin vm_energy_after_execute() */ |
| | | |
| | | vesicle->plist->pointer=vesicle->plist->chain->vm_energy_after_execute; |
| | | while(vesicle->plist->pointer!=NULL){ |
| | | delta_energy+=vesicle->plist->pointer->plugin->function->vm_energy_after_execute(vesicle, vtx); |
| | | vesicle->plist->pointer=vesicle->plist->pointer->next; |
| | | } |
| | | |
| | | |
| | | |
| | | if(vesicle->tape->constareaswitch==2){ |
| | | /* check whether the darea is gt epsarea */ |
| | |
| | | |
| | | } |
| | | |
| | | if(vesicle->tape->constvolswitch==2){ |
| | | /*check whether the dvol is gt than epsvol */ |
| | | //fprintf(stderr,"DVOL=%1.16e\n",dvol); |
| | | if(fabs(vesicle->volume+dvol-V0)>epsvol){ |
| | | //restore old state. |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //fprintf(stderr,"fajlam!\n"); |
| | | return TS_FAIL; |
| | | } |
| | | /* Vertices with spontaneous curvature may have spontaneous force perpendicular to the surface of the vesicle. additional delta energy is calculated in this function */ |
| | | delta_energy+=direct_force_energy(vesicle,vtx,backupvtx); |
| | | |
| | | } else |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume before=%1.16e\n", vesicle->volume); |
| | | if(vesicle->tape->constvolswitch == 1){ |
| | | retval=constvolume(vesicle, vtx, -dvol, &delta_energy_cv, &constvol_vtx_moved,&constvol_vtx_backup); |
| | | if(retval==TS_FAIL){ // if we couldn't move the vertex to assure constant volume |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | // fprintf(stderr,"fajlam!\n"); |
| | | return TS_FAIL; |
| | | } |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume after=%1.16e\n", vesicle->volume); |
| | | // fprintf(stderr,"Volume after-dvol=%1.16e\n", vesicle->volume-dvol); |
| | | // fprintf(stderr,"Denergy before=%e\n",delta_energy); |
| | | |
| | | delta_energy+=delta_energy_cv; |
| | | // fprintf(stderr,"Denergy after=%e\n",delta_energy); |
| | | } |
| | | //stretching energy 2 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | stretchenergy(vesicle, vtx->tristar[i]); |
| | | dstretchenergy+=vtx->tristar[i]->energy; |
| | | } |
| | | } |
| | | |
| | | delta_energy+=dstretchenergy; |
| | | |
| | | /* No poly-bond energy for now! |
| | | if(vtx->grafted_poly!=NULL){ |
| | | delta_energy+= |
| | |
| | | pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k; |
| | | } |
| | | */ |
| | | |
| | | // plane confinement energy due to compressing force |
| | | if(vesicle->tape->plane_confinement_switch){ |
| | | if(vesicle->confinement_plane.force_switch){ |
| | | //substract old energy |
| | | if(abs(vesicle->tape->plane_d/2.0-vesicle->confinement_plane.z_max)>1e-10) { |
| | | delta_energy-=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_max-backupvtx[0].z,2); |
| | | delta_energy+=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_max-vtx->z,2); |
| | | } |
| | | if(abs(-vesicle->tape->plane_d/2.0-vesicle->confinement_plane.z_min)>1e-10) { |
| | | delta_energy-=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_min-backupvtx[0].z,2); |
| | | delta_energy+=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_min-vtx->z,2); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | /* Entry point for plugin vm_before_montecarlo_constraint() function */ |
| | | vesicle->plist->pointer=vesicle->plist->chain->vm_before_montecarlo_constraint; |
| | | while(vesicle->plist->pointer!=NULL){ |
| | | retval = vesicle->plist->pointer->plugin->function->vm_before_montecarlo_constraint(vesicle,vtx, &backupvtx[0]); |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | return TS_FAIL; |
| | | } |
| | | vesicle->plist->pointer=vesicle->plist->pointer->next; |
| | | } |
| | | /* End of vm_before_montecarlo_constraint() */ |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | // fprintf(stderr, "DE=%f\n",delta_energy); |
| | | //MONTE CARLOOOOOOOO |
| | | if(delta_energy>=0){ |
| | |
| | | |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //stretching energy 3 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | stretchenergy(vesicle,vtx->tristar[i]); |
| | | } |
| | | } |
| | | |
| | | // fprintf(stderr, "before vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); |
| | | if(vesicle->tape->constvolswitch == 1){ |
| | |
| | | //accepted |
| | | // fprintf(stderr,"MC accepted\n"); |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |