Trisurf Monte Carlo simulator
Samo Penic
2014-03-05 719c9febac2eaff9483fda487b57684afbb59bb2
src/vertexmove.c
@@ -13,64 +13,97 @@
#include "vertexmove.h"
#include <string.h>
ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double
*rn){
ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){
    ts_uint i;
    ts_double dist;
    ts_bool retval; 
    ts_uint cellidx; 
    ts_double delta_energy,oenergy;
    ts_double costheta,sintheta,phi,r;
   //This will hold all the information of vtx and its neighbours
//   ts_vertex **backupvtx=(ts_vertex **)calloc(vtx->neigh_no+1,sizeof(ts_vertex *));
   ts_vertex backupvtx[20];
//   backupvtx[0]=(ts_vertex *)malloc(sizeof(ts_vertex));
   memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex));
   //Some stupid tests for debugging cell occupation!
/*        cellidx=vertex_self_avoidance(vesicle, vtx);
   if(vesicle->clist->cell[cellidx]==vtx->cell){
      fprintf(stderr,"Idx match!\n");
   } else {
      fprintf(stderr,"***** Idx don't match!\n");
      fatal("ENding.",1);
   }
*/
       //temporarly moving the vertex
   vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0);
       vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0);
       vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0);
       //check we if some length to neighbours are too much
    for(i=0;i<vtx->neigh_no;i++){
        dist=vtx_distance_sq(vtx,vtx->neigh[i]);
//   vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0);
//       vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0);
//       vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0);
   //random move in a sphere with radius stepsize:
   r=vesicle->stepsize*rn[0];
   phi=rn[1]*2*M_PI;
   costheta=2*rn[2]-1;
   sintheta=sqrt(1-pow(costheta,2));
   vtx->x=vtx->x+r*sintheta*cos(phi);
   vtx->y=vtx->y+r*sintheta*sin(phi);
   vtx->z=vtx->z+r*costheta;
       //distance with neighbours check
    for(i=0;i<vtx->neigh->n;i++){
        dist=vtx_distance_sq(vtx,vtx->neigh->vtx[i]);
        if(dist<1.0 || dist>vesicle->dmax) {
      vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
//      free(backupvtx[0]);
//      free(backupvtx);
//   fprintf(stderr,"Fail 1, dist=%f, vesicle->dmax=%f\n", dist, vesicle->dmax);
      return TS_FAIL;
      }
    }
// Distance with grafted poly-vertex check:
   if(vtx->grafted_poly!=NULL){
      dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]);
        if(dist<1.0 || dist>vesicle->dmax) {
      vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
      return TS_FAIL;
      }
   }
    //self avoidance check with distant vertices
     cellidx=vertex_self_avoidance(vesicle, vtx);
    //check occupation number
     retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,&backupvtx[0],vtx);
     retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx);
    if(retval==TS_FAIL){
      vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
//      free(backupvtx[0]);
//      free(backupvtx);
//   fprintf(stderr,"Fail 2\n");
        return TS_FAIL;
    } 
   
 
    //if all the tests are successful, then energy for vtx and neighbours is calculated
   for(i=0;i<vtx->neigh_no;i++){
//   backupvtx[i+1]=(ts_vertex *)malloc(sizeof(ts_vertex));
   memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex));
   for(i=0;i<vtx->neigh->n;i++){
   memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh->vtx[i],sizeof(ts_vertex));
   }
    delta_energy=0;
    //update the normals of triangles that share bead i.
    for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
    //energy and curvature
   oenergy=vtx->energy;
    energy_vertex(vtx);
    delta_energy=vtx->xk*(vtx->energy - (&backupvtx[0])->energy);
    delta_energy=vtx->xk*(vtx->energy - oenergy);
    //the same is done for neighbouring vertices
    for(i=0;i<vtx->neigh_no;i++){
        oenergy=vtx->neigh[i]->energy;
        energy_vertex(vtx->neigh[i]);
        delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy);
    for(i=0;i<vtx->neigh->n;i++){
        oenergy=vtx->neigh->vtx[i]->energy;
        energy_vertex(vtx->neigh->vtx[i]);
        delta_energy+=vtx->neigh->vtx[i]->xk*(vtx->neigh->vtx[i]->energy-oenergy);
    }
/* No poly-bond energy for now!
   if(vtx->grafted_poly!=NULL){
      delta_energy+=
         (pow(sqrt(vtx_distance_sq(vtx, vtx->grafted_poly->vlist->vtx[0])-1),2)-
         pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k;
   }
*/
//   fprintf(stderr, "DE=%f\n",delta_energy);
    //MONTE CARLOOOOOOOO
    if(delta_energy>=0){
@@ -86,13 +119,9 @@
    {
    //not accepted, reverting changes
   vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
//   free(backupvtx[0]);
   for(i=0;i<vtx->neigh_no;i++){
   vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex));
//   free(backupvtx[i+1]);
   for(i=0;i<vtx->neigh->n;i++){
      vtx->neigh->vtx[i]=memcpy((void *)vtx->neigh->vtx[i],(void *)&backupvtx[i+1],sizeof(ts_vertex));
   }
//   free(backupvtx);
//   fprintf(stderr,"Reverted\n");
   
    //update the normals of triangles that share bead i.
   for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
@@ -100,16 +129,120 @@
    return TS_FAIL; 
    }
}
//   oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]);
   if(vtx->cell!=vesicle->clist->cell[cellidx]){
      retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx);
//      if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx);
      if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx);
   }
//   if(oldcellidx);
    //END MONTE CARLOOOOOOO
    //TODO: change cell occupation if necessary!
//   fprintf(stderr,"Success!!\n");
//   free(backupvtx[0]);
//   for(i=0;i<vtx->neigh_no;i++){
//   free(backupvtx[i+1]);
//   }
//   free(backupvtx);
//   fprintf(stderr,"Accepted\n");
    return TS_SUCCESS;
}
ts_bool single_poly_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){
   ts_uint i;
   ts_bool retval;
   ts_uint cellidx;
//   ts_double delta_energy;
   ts_double costheta,sintheta,phi,r;
   ts_double dist;
   //This will hold all the information of vtx and its neighbours
   ts_vertex backupvtx;
//   ts_bond backupbond[2];
   memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex));
   //random move in a sphere with radius stepsize:
   r=vesicle->stepsize*rn[0];
   phi=rn[1]*2*M_PI;
   costheta=2*rn[2]-1;
   sintheta=sqrt(1-pow(costheta,2));
   vtx->x=vtx->x+r*sintheta*cos(phi);
   vtx->y=vtx->y+r*sintheta*sin(phi);
   vtx->z=vtx->z+r*costheta;
   //distance with neighbours check
   for(i=0;i<vtx->neigh_no;i++){
      dist=vtx_distance_sq(vtx,vtx->neigh[i]);
      if(dist<1.0 || dist>vesicle->dmax) {
         vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
         return TS_FAIL;
      }
   }
// Distance with grafted vesicle-vertex check:
   if(vtx==poly->vlist->vtx[0]){
      dist=vtx_distance_sq(vtx,poly->grafted_vtx);
        if(dist<1.0 || dist>vesicle->dmax) {
      vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
      return TS_FAIL;
      }
   }
   //self avoidance check with distant vertices
   cellidx=vertex_self_avoidance(vesicle, vtx);
   //check occupation number
   retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx);
   if(retval==TS_FAIL){
      vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
        return TS_FAIL;
   }
   //if all the tests are successful, then energy for vtx and neighbours is calculated
/* Energy ignored for now!
   delta_energy=0;
   for(i=0;i<vtx->bond_no;i++){
      memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond));
      vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2));
      bond_energy(vtx->bond[i],poly);
      delta_energy+= vtx->bond[i]->energy - backupbond[i].energy;
   }
   if(vtx==poly->vlist->vtx[0]){
      delta_energy+=
         (pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)-
         pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k;
   }
   if(delta_energy>=0){
#ifdef TS_DOUBLE_DOUBLE
        if(exp(-delta_energy)< drand48() )
#endif
#ifdef TS_DOUBLE_FLOAT
        if(expf(-delta_energy)< (ts_float)drand48())
#endif
#ifdef TS_DOUBLE_LONGDOUBLE
        if(expl(-delta_energy)< (ts_ldouble)drand48())
#endif
       {
   //not accepted, reverting changes
   vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
   for(i=0;i<vtx->bond_no;i++){
   vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond));
   }
    return TS_FAIL;
   }
   }
*/
//   oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]);
   if(vtx->cell!=vesicle->clist->cell[cellidx]){
      retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx);
//      if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx);
      if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx);
   }
//   if(oldcellidx);
    //END MONTE CARLOOOOOOO
    return TS_SUCCESS;
}