| | |
| | | #include "vertexmove.h" |
| | | #include <string.h> |
| | | |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double |
| | | *rn){ |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_double dist; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | ts_double delta_energy,oenergy; |
| | | ts_double costheta,sintheta,phi,r; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx[20]; |
| | | memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //Some stupid tests for debugging cell occupation! |
| | | /* cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | if(vesicle->clist->cell[cellidx]==vtx->cell){ |
| | | fprintf(stderr,"Idx match!\n"); |
| | | } else { |
| | | fprintf(stderr,"***** Idx don't match!\n"); |
| | | fatal("ENding.",1); |
| | | } |
| | | */ |
| | | |
| | | //temporarly moving the vertex |
| | | vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); |
| | | vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); |
| | | vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); |
| | | //check we if some length to neighbours are too much |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | dist=vtx_distance_sq(vtx,vtx->neigh[i]); |
| | | // vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); |
| | | // vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); |
| | | // vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->neigh->n;i++){ |
| | | dist=vtx_distance_sq(vtx,vtx->neigh->vtx[i]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // Distance with grafted poly-vertex check: |
| | | if(vtx->grafted_poly!=NULL){ |
| | | dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,&backupvtx[0],vtx); |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | |
| | | |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh->n;i++){ |
| | | memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh->vtx[i],sizeof(ts_vertex)); |
| | | } |
| | | |
| | | |
| | | |
| | | delta_energy=0; |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | oenergy=vtx->energy; |
| | | energy_vertex(vtx); |
| | | delta_energy=vtx->xk*(vtx->energy - (&backupvtx[0])->energy); |
| | | delta_energy=vtx->xk*(vtx->energy - oenergy); |
| | | //the same is done for neighbouring vertices |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | oenergy=vtx->neigh[i]->energy; |
| | | energy_vertex(vtx->neigh[i]); |
| | | delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); |
| | | for(i=0;i<vtx->neigh->n;i++){ |
| | | oenergy=vtx->neigh->vtx[i]->energy; |
| | | energy_vertex(vtx->neigh->vtx[i]); |
| | | delta_energy+=vtx->neigh->vtx[i]->xk*(vtx->neigh->vtx[i]->energy-oenergy); |
| | | } |
| | | /* No poly-bond energy for now! |
| | | if(vtx->grafted_poly!=NULL){ |
| | | delta_energy+= |
| | | (pow(sqrt(vtx_distance_sq(vtx, vtx->grafted_poly->vlist->vtx[0])-1),2)- |
| | | pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k; |
| | | } |
| | | */ |
| | | // fprintf(stderr, "DE=%f\n",delta_energy); |
| | | //MONTE CARLOOOOOOOO |
| | | if(delta_energy>=0){ |
| | |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh->n;i++){ |
| | | vtx->neigh->vtx[i]=memcpy((void *)vtx->neigh->vtx[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | // fprintf(stderr,"Reverted\n"); |
| | | |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |
| | | if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx); |
| | | |
| | | } |
| | | // if(oldcellidx); |
| | | //END MONTE CARLOOOOOOO |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool single_poly_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | // ts_double delta_energy; |
| | | ts_double costheta,sintheta,phi,r; |
| | | ts_double dist; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx; |
| | | // ts_bond backupbond[2]; |
| | | memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | dist=vtx_distance_sq(vtx,vtx->neigh[i]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // Distance with grafted vesicle-vertex check: |
| | | if(vtx==poly->vlist->vtx[0]){ |
| | | dist=vtx_distance_sq(vtx,poly->grafted_vtx); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | /* Energy ignored for now! |
| | | delta_energy=0; |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond)); |
| | | |
| | | vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2)); |
| | | bond_energy(vtx->bond[i],poly); |
| | | delta_energy+= vtx->bond[i]->energy - backupbond[i].energy; |
| | | } |
| | | |
| | | if(vtx==poly->vlist->vtx[0]){ |
| | | delta_energy+= |
| | | (pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)- |
| | | pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k; |
| | | |
| | | } |
| | | |
| | | |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(expl(-delta_energy)< (ts_ldouble)drand48()) |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); |
| | | } |
| | | |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | */ |
| | | |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |
| | | if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); |
| | | } |
| | | // if(oldcellidx); |
| | | //END MONTE CARLOOOOOOO |
| | | return TS_SUCCESS; |
| | | } |