| | |
| | | } |
| | | |
| | | |
| | | inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){ |
| | | //TODO: This value to be changed and implemented in data structure: |
| | | ts_double d_relaxed=1.0; |
| | | bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2); |
| | | return TS_SUCCESS; |
| | | }; |
| | | |
| | | |
| | | inline ts_bool energy_vertex(ts_vertex *vtx){ |
| | | // ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value! |
| | | // ts_triangle *tristar=vtx->tristar-1; |
| | | ts_vertex_data *data=vtx->data; |
| | | //ts_vertex_data *data=vtx->data; |
| | | ts_uint jj; |
| | | ts_uint jjp,jjm; |
| | | ts_vertex *j,*jp, *jm; |
| | | ts_triangle *jt; |
| | | ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0; |
| | | ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0; |
| | | ts_double x1,x2,x3,ctp,ctm,tot,xlen; |
| | | ts_double h,ht; |
| | | for(jj=1; jj<=data->neigh_no;jj++){ |
| | | for(jj=1; jj<=vtx->neigh->n;jj++){ |
| | | jjp=jj+1; |
| | | if(jjp>data->neigh_no) jjp=1; |
| | | if(jjp>vtx->neigh->n) jjp=1; |
| | | jjm=jj-1; |
| | | if(jjm<1) jjm=data->neigh_no; |
| | | j=data->neigh[jj-1]; |
| | | jp=data->neigh[jjp-1]; |
| | | jm=data->neigh[jjm-1]; |
| | | if(jjm<1) jjm=vtx->neigh->n; |
| | | j=vtx->neigh->vtx[jj-1]; |
| | | jp=vtx->neigh->vtx[jjp-1]; |
| | | jm=vtx->neigh->vtx[jjm-1]; |
| | | // printf("tristar_no=%u, neigh_no=%u, jj=%u\n",data->tristar_no,data->neigh_no,jj); |
| | | jt=data->tristar[jj-1]; |
| | | jt=vtx->tristar[jj-1]; |
| | | x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! |
| | | x2=vtx_distance_sq(j,jp); // shouldn't be zero! |
| | | x3=(j->data->x-jp->data->x)*(data->x-jp->data->x)+ |
| | | (j->data->y-jp->data->y)*(data->y-jp->data->y)+ |
| | | (j->data->z-jp->data->z)*(data->z-jp->data->z); |
| | | x3=(j->x-jp->x)*(vtx->x-jp->x)+ |
| | | (j->y-jp->y)*(vtx->y-jp->y)+ |
| | | (j->z-jp->z)*(vtx->z-jp->z); |
| | | |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | ctp=x3/sqrt(x1*x2-x3*x3); |
| | |
| | | #endif |
| | | x1=vtx_distance_sq(vtx,jm); |
| | | x2=vtx_distance_sq(j,jm); |
| | | x3=(j->data->x-jm->data->x)*(data->x-jm->data->x)+ |
| | | (j->data->y-jm->data->y)*(data->y-jm->data->y)+ |
| | | (j->data->z-jm->data->z)*(data->z-jm->data->z); |
| | | x3=(j->x-jm->x)*(vtx->x-jm->x)+ |
| | | (j->y-jm->y)*(vtx->y-jm->y)+ |
| | | (j->z-jm->z)*(vtx->z-jm->z); |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | ctm=x3/sqrt(x1*x2-x3*x3); |
| | | #endif |
| | |
| | | #endif |
| | | tot=ctp+ctm; |
| | | tot=0.5*tot; |
| | | |
| | | xlen=vtx_distance_sq(j,vtx); |
| | | /* |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | data->bond[jj-1]->data->bond_length=sqrt(xlen); |
| | | vtx->bond[jj-1]->bond_length=sqrt(xlen); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | data->bond[jj-1]->data->bond_length=sqrtf(xlen); |
| | | vtx->bond[jj-1]->bond_length=sqrtf(xlen); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | data->bond[jj-1]->data->bond_length=sqrtl(xlen); |
| | | vtx->bond[jj-1]->bond_length=sqrtl(xlen); |
| | | #endif |
| | | |
| | | data->bond[jj-1]->data->bond_length_dual=tot*data->bond[jj-1]->data->bond_length; |
| | | |
| | | vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length; |
| | | */ |
| | | s+=tot*xlen; |
| | | xh+=tot*(j->data->x - data->x); |
| | | yh+=tot*(j->data->y - data->y); |
| | | zh+=tot*(j->data->z - data->z); |
| | | xh+=tot*(j->x - vtx->x); |
| | | yh+=tot*(j->y - vtx->y); |
| | | zh+=tot*(j->z - vtx->z); |
| | | txn+=jt->xnorm; |
| | | tyn+=jt->ynorm; |
| | | tzn+=jt->znorm; |
| | |
| | | s=s/4.0; |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(ht>=0.0) { |
| | | data->curvature=sqrt(h); |
| | | vtx->curvature=sqrt(h); |
| | | } else { |
| | | data->curvature=-sqrt(h); |
| | | vtx->curvature=-sqrt(h); |
| | | } |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(ht>=0.0) { |
| | | data->curvature=sqrtf(h); |
| | | vtx->curvature=sqrtf(h); |
| | | } else { |
| | | data->curvature=-sqrtf(h); |
| | | vtx->curvature=-sqrtf(h); |
| | | } |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(ht>=0.0) { |
| | | data->curvature=sqrtl(h); |
| | | vtx->curvature=sqrtl(h); |
| | | } else { |
| | | data->curvature=-sqrtl(h); |
| | | vtx->curvature=-sqrtl(h); |
| | | } |
| | | #endif |
| | | // What is vtx->data->c?????????????? Here it is 0! |
| | | // What is vtx->c?????????????? Here it is 0! |
| | | // c is forced curvature energy for each vertex. Should be set to zero for |
| | | // norman circumstances. |
| | | data->energy=0.5*s*(data->curvature/s-data->c)*(data->curvature/s-data->c); |
| | | // normal circumstances. |
| | | vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c); |
| | | |
| | | return TS_SUCCESS; |
| | | } |