| | |
| | | /* vim: set ts=4 sts=4 sw=4 noet : */ |
| | | #include<stdlib.h> |
| | | #include<math.h> |
| | | #include "general.h" |
| | |
| | | #include "timestep.h" |
| | | #include "cell.h" |
| | | //#include "io.h" |
| | | #include "io.h" |
| | | #include<stdio.h> |
| | | #include "vertexmove.h" |
| | | #include <string.h> |
| | | #include "constvol.h" |
| | | |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double |
| | | *rn){ |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_double dist; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | ts_double xold,yold,zold; |
| | | ts_double delta_energy,oenergy; |
| | | ts_vertex *ovtx; |
| | | ts_vertex *tvtx=(ts_vertex *)calloc(1,sizeof(ts_vertex)); |
| | | ts_double delta_energy, delta_energy_cv,oenergy,dvol=0.0, darea=0.0, dstretchenergy=0.0; |
| | | ts_double temp_area=0.0; //for stretching |
| | | ts_double costheta,sintheta,phi,r; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx[20], *constvol_vtx_moved=NULL, *constvol_vtx_backup=NULL; |
| | | memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //randomly we move the temporary vertex |
| | | // tvtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); |
| | | // tvtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); |
| | | // tvtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); |
| | | //random move in a sphere with radius stepsize: |
| | | //Some stupid tests for debugging cell occupation! |
| | | /* cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | if(vesicle->clist->cell[cellidx]==vtx->cell){ |
| | | fprintf(stderr,"Idx match!\n"); |
| | | } else { |
| | | fprintf(stderr,"***** Idx don't match!\n"); |
| | | fatal("ENding.",1); |
| | | } |
| | | */ |
| | | |
| | | //temporarly moving the vertex |
| | | // vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); |
| | | // vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); |
| | | // vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | tvtx->x=vtx->x+r*sintheta*cos(phi); |
| | | tvtx->y=vtx->y+r*sintheta*sin(phi); |
| | | tvtx->z=vtx->z+r*costheta; |
| | | //check we if some length to neighbours are too much |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | dist=vtx_distance_sq(tvtx,vtx->neigh[i]); |
| | | dist=vtx_distance_sq(vtx,vtx->neigh[i]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx_free(tvtx); |
| | | // fprintf(stderr,"Fail 1, dist=%f, vesicle->dmax=%f\n", dist, vesicle->dmax); |
| | | return TS_FAIL; |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, tvtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx,tvtx); |
| | | |
| | | // Distance with grafted poly-vertex check: |
| | | if(vtx->grafted_poly!=NULL){ |
| | | dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // TODO: Maybe faster if checks only nucleus-neighboring cells |
| | | // Nucleus penetration check: |
| | | //#define SQ(x) x*x |
| | | if(vesicle->R_nucleus>0.0){ |
| | | if ((vtx->x-vesicle->nucleus_center[0])*(vtx->x-vesicle->nucleus_center[0])+ (vtx->y-vesicle->nucleus_center[1])*(vtx->y-vesicle->nucleus_center[1]) + (vtx->z-vesicle->nucleus_center[2])*(vtx->z-vesicle->nucleus_center[2]) < vesicle->R_nucleus){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } else if(vesicle->R_nucleusX>0.0){ |
| | | // fprintf(stderr,"DEBUG, (Rx, Ry,Rz)^2=(%f,%f,%f)\n",vesicle->R_nucleusX, vesicle->R_nucleusY, vesicle->R_nucleusZ); |
| | | // if (SQ(vtx->x-vesicle->nucleus_center[0])/vesicle->R_nucleusX + SQ(vtx->y-vesicle->nucleus_center[1])/vesicle->R_nucleusY + SQ(vtx->z-vesicle->nucleus_center[2])/vesicle->R_nucleusZ < 1.0){ |
| | | if ((vtx->x-vesicle->nucleus_center[0])*(vtx->x-vesicle->nucleus_center[0])/vesicle->R_nucleusX + (vtx->y-vesicle->nucleus_center[1])*(vtx->y-vesicle->nucleus_center[1])/vesicle->R_nucleusY + (vtx->z-vesicle->nucleus_center[2])*(vtx->z-vesicle->nucleus_center[2])/vesicle->R_nucleusZ < 1.0){ |
| | | // if (SQ(vtx->x)/vesicle->R_nucleusX + SQ(vtx->y)/vesicle->R_nucleusY + SQ(vtx->z)/vesicle->R_nucleusZ < 1.0){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | } |
| | | //#undef SQ |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | |
| | | if(retval==TS_FAIL){ |
| | | vtx_free(tvtx); |
| | | // fprintf(stderr,"Fail 2\n"); |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | //if all the tests are successful, then we update the vertex position |
| | | xold=vtx->x; |
| | | yold=vtx->y; |
| | | zold=vtx->z; |
| | | ovtx=malloc(sizeof(ts_vertex)); |
| | | vtx_copy(ovtx,vtx); |
| | | vtx->x=tvtx->x; |
| | | vtx->y=tvtx->y; |
| | | vtx->z=tvtx->z; |
| | | |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); |
| | | } |
| | | |
| | | if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch>0){ |
| | | for(i=0;i<vtx->tristar_no;i++) dvol-=vtx->tristar[i]->volume; |
| | | } |
| | | |
| | | if(vesicle->tape->constareaswitch==2){ |
| | | for(i=0;i<vtx->tristar_no;i++) darea-=vtx->tristar[i]->area; |
| | | |
| | | } |
| | | //stretching energy 1 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | temp_area=vesicle->area; |
| | | dstretchenergy-=stretchenergy2(vesicle->area,vesicle->tlist->a0*vesicle->tlist->n); |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | temp_area-=vtx->tristar[i]->area; |
| | | } |
| | | //0.5*vesicle->tape->xkA0*pow((vesicle->area-vesicle->tlist->a0*vesicle->tlist->n),2)/(vesicle->tlist->a0*vesicle->tlist->n); |
| | | //for(i=0;i<vtx->tristar_no;i++) dstretchenergy-=vtx->tristar[i]->energy; |
| | | } |
| | | delta_energy=0; |
| | | |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume in the beginning=%1.16e\n", vesicle->volume); |
| | | |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //energy and curvature |
| | | oenergy=vtx->energy; |
| | | energy_vertex(vtx); |
| | | delta_energy=vtx->xk*(vtx->energy - ovtx->energy); |
| | | delta_energy=vtx->xk*(vtx->energy - oenergy); |
| | | //the same is done for neighbouring vertices |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | oenergy=vtx->neigh[i]->energy; |
| | | energy_vertex(vtx->neigh[i]); |
| | | delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); |
| | | } |
| | | |
| | | if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch >0){ |
| | | for(i=0;i<vtx->tristar_no;i++) dvol+=vtx->tristar[i]->volume; |
| | | if(vesicle->pswitch==1) delta_energy-=vesicle->pressure*dvol; |
| | | }; |
| | | |
| | | if(vesicle->tape->constareaswitch==2){ |
| | | /* check whether the darea is gt epsarea */ |
| | | for(i=0;i<vtx->tristar_no;i++) darea+=vtx->tristar[i]->area; |
| | | if(fabs(vesicle->area+darea-A0)>epsarea){ |
| | | //restore old state. |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //fprintf(stderr,"fajlam!\n"); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | |
| | | } |
| | | |
| | | if(vesicle->tape->constvolswitch==2){ |
| | | /*check whether the dvol is gt than epsvol */ |
| | | //fprintf(stderr,"DVOL=%1.16e, V0=%1.16e, vesicleVolume=%1.16e, |volume+dvol-V0|=%1.16e\n",dvol, V0, vesicle->volume, fabs(vesicle->volume+dvol-V0)); |
| | | if(fabs(vesicle->volume+dvol-V0)>epsvol){ |
| | | //restore old state. |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | // fprintf(stderr,"fajlam!\n"); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | } else |
| | | //fprintf(stderr, "success\n"); |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume before=%1.16e\n", vesicle->volume); |
| | | if(vesicle->tape->constvolswitch == 1){ |
| | | retval=constvolume(vesicle, vtx, -dvol, &delta_energy_cv, &constvol_vtx_moved,&constvol_vtx_backup); |
| | | if(retval==TS_FAIL){ // if we couldn't move the vertex to assure constant volume |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | // fprintf(stderr,"fajlam!\n"); |
| | | return TS_FAIL; |
| | | } |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume after=%1.16e\n", vesicle->volume); |
| | | // fprintf(stderr,"Volume after-dvol=%1.16e\n", vesicle->volume-dvol); |
| | | // fprintf(stderr,"Denergy before=%e\n",delta_energy); |
| | | |
| | | delta_energy+=delta_energy_cv; |
| | | // fprintf(stderr,"Denergy after=%e\n",delta_energy); |
| | | } |
| | | /* Vertices with spontaneous curvature may have spontaneous force perpendicular to the surface of the vesicle. additional delta energy is calculated in this function */ |
| | | delta_energy+=direct_force_energy(vesicle,vtx,backupvtx); |
| | | |
| | | //stretching energy 2 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | temp_area+=vtx->tristar[i]->area; |
| | | } |
| | | dstretchenergy+=stretchenergy2(temp_area,vesicle->tlist->a0*vesicle->tlist->n); |
| | | dstretchenergy=0.5*vesicle->tape->xkA0*dstretchenergy; |
| | | |
| | | } |
| | | |
| | | delta_energy+=dstretchenergy; |
| | | |
| | | /* No poly-bond energy for now! |
| | | if(vtx->grafted_poly!=NULL){ |
| | | delta_energy+= |
| | | (pow(sqrt(vtx_distance_sq(vtx, vtx->grafted_poly->vlist->vtx[0])-1),2)- |
| | | pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k; |
| | | } |
| | | */ |
| | | // fprintf(stderr, "DE=%f\n",delta_energy); |
| | | //MONTE CARLOOOOOOOO |
| | | // if(vtx->c!=0.0) printf("DE=%f\n",delta_energy); |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | if(exp(-delta_energy)< drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx->x=xold; |
| | | vtx->y=yold; |
| | | vtx->z=zold; |
| | | // fprintf(stderr,"MC failed\n"); |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); |
| | | } |
| | | |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //energy and curvature |
| | | energy_vertex(vtx); |
| | | //the same is done for neighbouring vertices |
| | | for(i=0;i<vtx->neigh_no;i++) energy_vertex(vtx->neigh[i]); |
| | | free(ovtx->bond_length); |
| | | free(ovtx->bond_length_dual); |
| | | free(ovtx); |
| | | vtx_free(tvtx); |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | /* //stretching energy 3 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | stretchenergy(vesicle,vtx->tristar[i]); |
| | | } |
| | | } |
| | | */ |
| | | // fprintf(stderr, "before vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); |
| | | if(vesicle->tape->constvolswitch == 1){ |
| | | constvolumerestore(constvol_vtx_moved,constvol_vtx_backup); |
| | | } |
| | | // fprintf(stderr, "after vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume after fail=%1.16e\n", vesicle->volume); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | //END MONTE CARLOOOOOOO |
| | | //accepted |
| | | // fprintf(stderr,"MC accepted\n"); |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |
| | | if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx); |
| | | |
| | | } |
| | | |
| | | //TODO: change cell occupation if necessary! |
| | | // fprintf(stderr,"Success!!\n"); |
| | | free(ovtx->bond_length); |
| | | free(ovtx->bond_length_dual); |
| | | free(ovtx); |
| | | vtx_free(tvtx); |
| | | if(vesicle->tape->constvolswitch == 2){ |
| | | vesicle->volume+=dvol; |
| | | } else |
| | | if(vesicle->tape->constvolswitch == 1){ |
| | | constvolumeaccept(vesicle,constvol_vtx_moved,constvol_vtx_backup); |
| | | } |
| | | |
| | | if(vesicle->tape->constareaswitch==2){ |
| | | vesicle->area+=darea; |
| | | } |
| | | //stretching energy 3 of 3 |
| | | if(vesicle->tape->stretchswitch==1){ |
| | | vesicle->area=temp_area; |
| | | } |
| | | // if(oldcellidx); |
| | | //END MONTE CARLOOOOOOO |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume after success=%1.16e\n", vesicle->volume); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool single_poly_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | // ts_double delta_energy; |
| | | ts_double costheta,sintheta,phi,r; |
| | | ts_double dist; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx; |
| | | // ts_bond backupbond[2]; |
| | | memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | dist=vtx_distance_sq(vtx,vtx->neigh[i]); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // Distance with grafted vesicle-vertex check: |
| | | if(vtx==poly->vlist->vtx[0]){ |
| | | dist=vtx_distance_sq(vtx,poly->grafted_vtx); |
| | | if(dist<1.0 || dist>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | /* Energy ignored for now! |
| | | delta_energy=0; |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond)); |
| | | |
| | | vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2)); |
| | | bond_energy(vtx->bond[i],poly); |
| | | delta_energy+= vtx->bond[i]->energy - backupbond[i].energy; |
| | | } |
| | | |
| | | if(vtx==poly->vlist->vtx[0]){ |
| | | delta_energy+= |
| | | (pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)- |
| | | pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k; |
| | | |
| | | } |
| | | |
| | | |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(expl(-delta_energy)< (ts_ldouble)drand48()) |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); |
| | | } |
| | | |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | */ |
| | | |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |
| | | if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); |
| | | } |
| | | // if(oldcellidx); |
| | | //END MONTE CARLOOOOOOO |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | |
| | | ts_bool single_filament_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | ts_double delta_energy; |
| | | ts_double costheta,sintheta,phi,r; |
| | | ts_double dist[2]; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx,backupneigh[2]; |
| | | ts_bond backupbond[2]; |
| | | |
| | | //backup vertex: |
| | | memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | dist[i]=vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2); |
| | | if(dist[i]<1.0 || dist[i]>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | // TODO: Maybe faster if checks only nucleus-neighboring cells |
| | | // Nucleus penetration check: |
| | | if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | //backup bonds |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | memcpy(&backupbond[i],vtx->bond[i], sizeof(ts_bond)); |
| | | vtx->bond[i]->bond_length=sqrt(dist[i]); |
| | | bond_vector(vtx->bond[i]); |
| | | } |
| | | |
| | | //backup neighboring vertices: |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy(&backupneigh[i],vtx->neigh[i], sizeof(ts_vertex)); |
| | | } |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | delta_energy=0; |
| | | |
| | | if(vtx->bond_no == 2){ |
| | | vtx->energy = -(vtx->bond[0]->x*vtx->bond[1]->x + vtx->bond[0]->y*vtx->bond[1]->y + vtx->bond[0]->z*vtx->bond[1]->z)/vtx->bond[0]->bond_length/vtx->bond[1]->bond_length; |
| | | delta_energy += vtx->energy - backupvtx.energy; |
| | | } |
| | | |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | if(vtx->neigh[i]->bond_no == 2){ |
| | | vtx->neigh[i]->energy = -(vtx->neigh[i]->bond[0]->x*vtx->neigh[i]->bond[1]->x + vtx->neigh[i]->bond[0]->y*vtx->neigh[i]->bond[1]->y + vtx->neigh[i]->bond[0]->z*vtx->neigh[i]->bond[1]->z)/vtx->neigh[i]->bond[0]->bond_length/vtx->neigh[i]->bond[1]->bond_length; |
| | | delta_energy += vtx->neigh[i]->energy - backupneigh[i].energy; |
| | | } |
| | | } |
| | | |
| | | // poly->k is filament persistence length (in units l_min) |
| | | delta_energy *= poly->k; |
| | | |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(expl(-delta_energy)< (ts_ldouble)drand48()) |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy(vtx->neigh[i],&backupneigh[i],sizeof(ts_vertex)); |
| | | } |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); |
| | | } |
| | | |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |
| | | if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); |
| | | } |
| | | // if(oldcellidx); |
| | | //END MONTE CARLOOOOOOO |
| | | return TS_SUCCESS; |
| | | } |