Trisurf Monte Carlo simulator
Samo Penic
2012-07-13 672ae43d88ba88cf1f4183511bd56f90c7c4d2ed
src/energy.c
@@ -6,14 +6,14 @@
#include<stdio.h>
ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){
    ts_uint i, jj, jjp;
    ts_uint i;
    
    ts_vertex_list *vlist=&vesicle->vlist;
    ts_vertex *vtx=vlist->vertex;
    ts_vertex_list *vlist=vesicle->vlist;
    ts_vertex **vtx=vlist->vtx;
    for(i=0;i<vlist->n;i++){
        //should call with zero index!!!
        energy_vertex(&vtx[i]);
        energy_vertex(vtx[i]);
    }
    return TS_SUCCESS;
@@ -23,11 +23,12 @@
inline ts_bool energy_vertex(ts_vertex *vtx){
//    ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value!
//    ts_triangle *tristar=vtx->tristar-1;
    //ts_vertex_data *data=vtx->data;
    ts_uint jj;
    ts_uint jjp,jjm;
    ts_vertex *j,*jp, *jm;
    ts_triangle *jt;
    ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0;
    ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0;
    ts_double x1,x2,x3,ctp,ctm,tot,xlen;
    ts_double h,ht;
    for(jj=1; jj<=vtx->neigh_no;jj++){
@@ -38,9 +39,10 @@
        j=vtx->neigh[jj-1];
        jp=vtx->neigh[jjp-1];
        jm=vtx->neigh[jjm-1];
//        printf("tristar_no=%u, neigh_no=%u, jj=%u\n",data->tristar_no,data->neigh_no,jj);
        jt=vtx->tristar[jj-1];
        x1=vertex_distance_sq(vtx,jp); //shouldn't be zero!
        x2=vertex_distance_sq(j,jp); // shouldn't be zero!
        x1=vtx_distance_sq(vtx,jp); //shouldn't be zero!
        x2=vtx_distance_sq(j,jp); // shouldn't be zero!
        x3=(j->x-jp->x)*(vtx->x-jp->x)+
           (j->y-jp->y)*(vtx->y-jp->y)+
           (j->z-jp->z)*(vtx->z-jp->z);
@@ -54,8 +56,8 @@
#ifdef TS_DOUBLE_LONGDOUBLE
        ctp=x3/sqrtl(x1*x2-x3*x3);
#endif
        x1=vertex_distance_sq(vtx,jm);
        x2=vertex_distance_sq(j,jm);
        x1=vtx_distance_sq(vtx,jm);
        x2=vtx_distance_sq(j,jm);
        x3=(j->x-jm->x)*(vtx->x-jm->x)+
           (j->y-jm->y)*(vtx->y-jm->y)+
           (j->z-jm->z)*(vtx->z-jm->z);
@@ -70,19 +72,21 @@
#endif
        tot=ctp+ctm;
        tot=0.5*tot;
        xlen=vertex_distance_sq(j,vtx);
        xlen=vtx_distance_sq(j,vtx);
/*
#ifdef  TS_DOUBLE_DOUBLE 
        vtx->bond_length[jj-1]=sqrt(xlen);
        vtx->bond[jj-1]->bond_length=sqrt(xlen);
#endif
#ifdef  TS_DOUBLE_FLOAT
        vtx->bond_length[jj-1]=sqrtf(xlen);
        vtx->bond[jj-1]->bond_length=sqrtf(xlen);
#endif
#ifdef  TS_DOUBLE_LONGDOUBLE 
        vtx->bond_length[jj-1]=sqrtl(xlen);
        vtx->bond[jj-1]->bond_length=sqrtl(xlen);
#endif
        vtx->bond_length_dual[jj-1]=tot*vtx->bond_length[jj-1];
        vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length;
*/
        s+=tot*xlen;
        xh+=tot*(j->x - vtx->x);
        yh+=tot*(j->y - vtx->y);
@@ -116,6 +120,9 @@
        vtx->curvature=-sqrtl(h);
    }
#endif
// What is vtx->c?????????????? Here it is 0!
// c is forced curvature energy for each vertex. Should be set to zero for
// normal circumstances.
    vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c);
    return TS_SUCCESS;