Trisurf Monte Carlo simulator
Samo Penic
2021-05-10 6487a03362d35589c286d0660eba123a7ab00535
src/poly.c
@@ -6,7 +6,8 @@
#include"bond.h"
#include<math.h>
#include"energy.h"
#include"cell.h"
#include"frame.h"
ts_bool poly_assign_filament_xi(ts_vesicle *vesicle, ts_tape *tape){
   ts_uint i;
@@ -47,45 +48,20 @@
   poly->blist->bond[i]->bond_length=sqrt(vtx_distance_sq(poly->blist->bond[i]->vtx1,poly->blist->bond[i]->vtx2));
   bond_energy(poly->blist->bond[i],poly);
   }
   vertex_list_assign_id(poly->vlist,TS_ID_FILAMENT);
   return poly;
}
ts_poly_list *init_poly_list(ts_uint n_poly, ts_uint n_mono, ts_vertex_list *vlist, ts_vesicle *vesicle){
   ts_poly_list *poly_list=(ts_poly_list *)calloc(1,sizeof(ts_poly_list));
   poly_list->poly   = (ts_poly **)calloc(n_poly,sizeof(ts_poly *));
   ts_uint i=0,j=0; //idx;
   ts_uint gvtxi;
   ts_double xnorm,ynorm,znorm,normlength;
   ts_double dphi,dh;
   // Grafting polymers:
   if (vlist!=NULL){
      if (n_poly > vlist->n){fatal("Number of polymers larger than numbero f vertices on a vesicle.",310);}
      while(i<n_poly){
         gvtxi = rand() % vlist->n;
         if (vlist->vtx[gvtxi]->grafted_poly == NULL){
         poly_list->poly[i] = init_poly(n_mono, vlist->vtx[gvtxi]);
         i++;
         }
      }
   }
   else
   {
      for(i=0;i<n_poly;i++){
         poly_list->poly[i] = init_poly(n_mono, NULL);
      }
   }
   poly_list->n = n_poly;
   if (vlist!=NULL){
ts_bool poly_initial_distribution(ts_poly_list *poly_list, ts_int i, ts_vesicle *vesicle){
   /* Make straight grafted poylmers normal to membrane (polymer brush). Dist. between poly vertices put to 1*/
      ts_double xnorm,ynorm,znorm,normlength;
      ts_int intpoly=vesicle->tape->internal_poly;
      for (i=0;i<poly_list->n;i++){
      ts_int cellidx;
      ts_double posX,posY,posZ,prevPosX,prevPosY,prevPosZ, phi,costheta,sintheta;
      ts_bool retval;
      ts_int j,k,l,m;
         xnorm=0.0;
         ynorm=0.0;
         znorm=0.0;
@@ -101,13 +77,123 @@
         xnorm=xnorm/normlength;
         ynorm=ynorm/normlength;
         znorm=znorm/normlength;
         //prepare starting position for building the polymeres
         prevPosX=poly_list->poly[i]->grafted_vtx->x;
         prevPosY=poly_list->poly[i]->grafted_vtx->y;
         prevPosZ=poly_list->poly[i]->grafted_vtx->z;
         for (j=0;j<poly_list->poly[i]->vlist->n;j++){
            poly_list->poly[i]->vlist->vtx[j]->x = poly_list->poly[i]->grafted_vtx->x + xnorm*(ts_double)(j+1);
            poly_list->poly[i]->vlist->vtx[j]->y = poly_list->poly[i]->grafted_vtx->y + ynorm*(ts_double)(j+1);
            poly_list->poly[i]->vlist->vtx[j]->z = poly_list->poly[i]->grafted_vtx->z + znorm*(ts_double)(j+1);
            //if(j==0){
               posX=prevPosX+xnorm*(vesicle->clist->dmin_interspecies);
               posY=prevPosY+ynorm*(vesicle->clist->dmin_interspecies);
               posZ=prevPosZ+znorm*(vesicle->clist->dmin_interspecies);
            //}else{
            //   posX=prevPosX+xnorm;
            //   posY=prevPosY+ynorm;
            //   posZ=prevPosZ+znorm;
            //}
            //trying to go towards normal
            k=0;
            while(1){
               poly_list->poly[i]->vlist->vtx[j]->x = posX;
               poly_list->poly[i]->vlist->vtx[j]->y = posY;
               poly_list->poly[i]->vlist->vtx[j]->z = posZ;
               cellidx=vertex_self_avoidance(vesicle, poly_list->poly[i]->vlist->vtx[j]);
               retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,poly_list->poly[i]->vlist->vtx[j]);
               if(retval==TS_SUCCESS){
                  retval=cell_add_vertex(vesicle->clist->cell[cellidx],poly_list->poly[i]->vlist->vtx[j]);
                  break;
               }
               else{
               //   printf("%d %d Cannot put the vertex here. Finding another position\n",i,j);
                  //randomly change the direction.
                  m=0;
                  //we must move first vertex into the vesicle if the normal is in or out of the vesicle if the normal is out
                  do{
                     costheta=2.0*drand48()-1.0;
                     sintheta=sqrt(1-pow(costheta,2));
                     phi=drand48()*2.0*M_PI;
                     if(j==0){
                  //for special cases, when we are on the edge of bipyramid  the distance od dmin_interspecies is not enough
                        posX=prevPosX+vesicle->dmax*sintheta*cos(phi);
                        posY=prevPosY+vesicle->dmax*sintheta*sin(phi);
                        posZ=prevPosZ+vesicle->dmax*costheta;
                     } else {
                        posX=prevPosX+vesicle->clist->dmin_interspecies*sintheta*cos(phi);
                        posY=prevPosY+vesicle->clist->dmin_interspecies*sintheta*sin(phi);
                        posZ=prevPosZ+vesicle->clist->dmin_interspecies*costheta;
                     }
                     m++;
                     if(m>1000) {
                        k=9999; //break also ot of the outer loop
                        break;
                     }
                  }
                  while((xnorm*(poly_list->poly[i]->grafted_vtx->x-posX)+ynorm*(poly_list->poly[i]->grafted_vtx->y-posY)+znorm*(poly_list->poly[i]->grafted_vtx->z-posZ))>0.0 && j==0);
               }
               k++;
               if(k>1000){
                  //undo changes to the cell
                  for(l=0;l<j;l++){
                     cellidx=vertex_self_avoidance(vesicle, poly_list->poly[i]->vlist->vtx[l]);
                     cell_remove_vertex(vesicle->clist->cell[cellidx],poly_list->poly[i]->vlist->vtx[l]);
                  }
                  return TS_FAIL;
               }
            }
            prevPosX=posX;
            prevPosY=posY;
            prevPosZ=posZ;
         }
   printf("did it\n");
   return TS_SUCCESS;
}
ts_poly_list *init_poly_list(ts_uint n_poly, ts_uint n_mono, ts_vertex_list *vlist, ts_vesicle *vesicle){
   ts_poly_list *poly_list=(ts_poly_list *)calloc(1,sizeof(ts_poly_list));
   poly_list->poly   = (ts_poly **)calloc(n_poly,sizeof(ts_poly *));
   ts_uint i=0,j=0; //idx;
   ts_uint gvtxi;
   ts_bool retval;
   ts_double dphi,dh;
   cell_occupation(vesicle); //needed for evading the membrane
   // Grafting polymers:
   int tries=0;
   if (vlist!=NULL){
      if (n_poly > vlist->n){fatal("Number of polymers larger than numbero f vertices on a vesicle.",310);}
      while(i<n_poly){
         gvtxi = rand() % vlist->n;
         if (vlist->vtx[gvtxi]->grafted_poly == NULL){
            poly_list->poly[i] = init_poly(n_mono, vlist->vtx[gvtxi]);
            retval=poly_initial_distribution(poly_list, i, vesicle);
            if(retval==TS_FAIL){
               ts_fprintf(stdout,"Found new potential grafting vertex %d for poly %d\n",gvtxi,i);
               poly_free(poly_list->poly[i]);
               tries++;
            }
            else {
               tries=0;
               i++;
            }
            if(tries>5000){
               fatal("Cannot find space for inner polymeres",1001);
            }
         }
      }
   }
   else
   {
      for(i=0;i<n_poly;i++){
         poly_list->poly[i] = init_poly(n_mono, NULL);
      }
   }
   poly_list->n = n_poly;
   if (vlist!=NULL){
   }
   else
   {
@@ -149,7 +235,7 @@
      }
   }
*/
   return poly_list;
}
@@ -217,3 +303,15 @@
   return TS_SUCCESS;
}
ts_poly_list *init_empty_poly_list(ts_uint n_poly, ts_uint n_mono){
   ts_poly_list *poly_list=(ts_poly_list *)calloc(1,sizeof(ts_poly_list));
   poly_list->poly=(ts_poly **)calloc(n_poly,sizeof(ts_poly *));
   ts_uint i;
   for (i=0; i<n_poly;i++){
      poly_list->poly[i]=init_poly(n_mono, NULL);
   }
   poly_list->n = n_poly;
   return poly_list;
}