| | |
| | | /* vim: set ts=4 sts=4 sw=4 noet : */ |
| | | #include<stdlib.h> |
| | | #include "general.h" |
| | | #include "energy.h" |
| | | #include "vertex.h" |
| | | #include "bond.h" |
| | | #include<math.h> |
| | | #include<stdio.h> |
| | | |
| | | |
| | | /** @brief Wrapper that calculates energy of every vertex in vesicle |
| | | * |
| | | * Function calculated energy of every vertex in vesicle. It can be used in |
| | | * initialization procedure or in recalculation of the energy after non-MCsweep * operations. However, when random move of vertex or flip of random bond occur * call to this function is not necessary nor recommended. |
| | | * @param *vesicle is a pointer to vesicle. |
| | | * @returns TS_SUCCESS on success. |
| | | */ |
| | | ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){ |
| | | |
| | | ts_uint i; |
| | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /** @brief Calculate energy of a bond (in models where energy is bond related) |
| | | * |
| | | * This function is experimental and currently only used in polymeres calculation (PEGs or polymeres inside the vesicle). |
| | | * |
| | | * @param *bond is a pointer to a bond between two vertices in polymere |
| | | * @param *poly is a pointer to polymere in which we calculate te energy of the bond |
| | | * @returns TS_SUCCESS on successful calculation |
| | | */ |
| | | inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){ |
| | | //TODO: This value to be changed and implemented in data structure: |
| | | ts_double d_relaxed=1.0; |
| | | bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2); |
| | | return TS_SUCCESS; |
| | | }; |
| | | |
| | | /** @brief Calculation of the bending energy of the vertex. |
| | | * |
| | | * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, |
| | | * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. |
| | | * |
| | | * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. |
| | | * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. |
| | | * |
| | | \begin{tikzpicture}{ |
| | | \coordinate[label=below:$i$] (i) at (2,0); |
| | | \coordinate[label=left:$j_m$] (jm) at (0,3.7); |
| | | \coordinate[label=above:$j$] (j) at (2.5,6.4); |
| | | \coordinate[label=right:$j_p$] (jp) at (4,2.7); |
| | | |
| | | \draw (i) -- (jm) -- (j) -- (jp) -- (i) -- (j); |
| | | |
| | | \begin{scope} |
| | | \path[clip] (jm)--(i)--(j); |
| | | \draw (jm) circle (0.8); |
| | | \node[right] at (jm) {$\varphi_m$}; |
| | | \end{scope} |
| | | |
| | | \begin{scope} |
| | | \path[clip] (jp)--(i)--(j); |
| | | \draw (jp) circle (0.8); |
| | | \node[left] at (jp) {$\varphi_p$}; |
| | | \end{scope} |
| | | |
| | | %%vertices |
| | | \draw [fill=gray] (i) circle (0.1); |
| | | \draw [fill=white] (j) circle (0.1); |
| | | \draw [fill=white] (jp) circle (0.1); |
| | | \draw [fill=white] (jm) circle (0.1); |
| | | %\node[draw,circle,fill=white] at (i) {}; |
| | | \end{tikzpicture} |
| | | |
| | | * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). |
| | | * |
| | | * From the curvature the enery is calculated by equation \f$E=\frac{1}{2}\mathbf{h}\cdot\mathbf{h}\f$. |
| | | * @param *vtx is a pointer to vertex at which we want to calculate the energy |
| | | * @returns TS_SUCCESS on successful calculation. |
| | | */ |
| | | inline ts_bool energy_vertex(ts_vertex *vtx){ |
| | | // ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value! |
| | | // ts_triangle *tristar=vtx->tristar-1; |
| | | ts_vertex_data *data=vtx->data; |
| | | ts_uint jj; |
| | | ts_uint jjp,jjm; |
| | | ts_vertex *j,*jp, *jm; |
| | | ts_triangle *jt; |
| | | ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0; |
| | | ts_double x1,x2,x3,ctp,ctm,tot,xlen; |
| | | ts_double h,ht; |
| | | for(jj=1; jj<=data->neigh_no;jj++){ |
| | | jjp=jj+1; |
| | | if(jjp>data->neigh_no) jjp=1; |
| | | jjm=jj-1; |
| | | if(jjm<1) jjm=data->neigh_no; |
| | | j=data->neigh[jj-1]; |
| | | jp=data->neigh[jjp-1]; |
| | | jm=data->neigh[jjm-1]; |
| | | // printf("tristar_no=%u, neigh_no=%u, jj=%u\n",data->tristar_no,data->neigh_no,jj); |
| | | jt=data->tristar[jj-1]; |
| | | x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! |
| | | x2=vtx_distance_sq(j,jp); // shouldn't be zero! |
| | | x3=(j->data->x-jp->data->x)*(data->x-jp->data->x)+ |
| | | (j->data->y-jp->data->y)*(data->y-jp->data->y)+ |
| | | (j->data->z-jp->data->z)*(data->z-jp->data->z); |
| | | |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | ctp=x3/sqrt(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | ctp=x3/sqrtf(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | ctp=x3/sqrtl(x1*x2-x3*x3); |
| | | #endif |
| | | x1=vtx_distance_sq(vtx,jm); |
| | | x2=vtx_distance_sq(j,jm); |
| | | x3=(j->data->x-jm->data->x)*(data->x-jm->data->x)+ |
| | | (j->data->y-jm->data->y)*(data->y-jm->data->y)+ |
| | | (j->data->z-jm->data->z)*(data->z-jm->data->z); |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | ctm=x3/sqrt(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | ctm=x3/sqrtf(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | ctm=x3/sqrtl(x1*x2-x3*x3); |
| | | #endif |
| | | tot=ctp+ctm; |
| | | tot=0.5*tot; |
| | | xlen=vtx_distance_sq(j,vtx); |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | data->bond[jj-1]->bond_length=sqrt(xlen); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | data->bond[jj-1]->bond_length=sqrtf(xlen); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | data->bond[jj-1]->bond_length=sqrtl(xlen); |
| | | #endif |
| | | ts_uint jj, i, j; |
| | | ts_double edge_vector_x[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_vector_y[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_vector_z[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_normal_x[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_normal_y[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_normal_z[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_binormal_x[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_binormal_y[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_binormal_z[7]={0,0,0,0,0,0,0}; |
| | | ts_double vertex_normal_x=0.0; |
| | | ts_double vertex_normal_y=0.0; |
| | | ts_double vertex_normal_z=0.0; |
| | | // ts_triangle *triedge[2]={NULL,NULL}; |
| | | |
| | | data->bond[jj-1]->bond_length_dual=tot*data->bond[jj-1]->bond_length; |
| | | ts_uint nei,neip,neim; |
| | | ts_vertex *it, *k, *kp,*km; |
| | | ts_triangle *lm=NULL, *lp=NULL; |
| | | ts_double sumnorm; |
| | | |
| | | s+=tot*xlen; |
| | | xh+=tot*(j->data->x - data->x); |
| | | yh+=tot*(j->data->y - data->y); |
| | | zh+=tot*(j->data->z - data->z); |
| | | txn+=jt->xnorm; |
| | | tyn+=jt->ynorm; |
| | | tzn+=jt->znorm; |
| | | } |
| | | |
| | | h=xh*xh+yh*yh+zh*zh; |
| | | ht=txn*xh+tyn*yh + tzn*zh; |
| | | s=s/4.0; |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(ht>=0.0) { |
| | | data->curvature=sqrt(h); |
| | | } else { |
| | | data->curvature=-sqrt(h); |
| | | } |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(ht>=0.0) { |
| | | data->curvature=sqrtf(h); |
| | | } else { |
| | | data->curvature=-sqrtf(h); |
| | | } |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(ht>=0.0) { |
| | | data->curvature=sqrtl(h); |
| | | } else { |
| | | data->curvature=-sqrtl(h); |
| | | } |
| | | #endif |
| | | // What is vtx->data->c?????????????? Here it is 0! |
| | | // c is forced curvature energy for each vertex. Should be set to zero for |
| | | // norman circumstances. |
| | | data->energy=0.5*s*(data->curvature/s-data->c)*(data->curvature/s-data->c); |
| | | // Here edge vector is calculated |
| | | // fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no); |
| | | for(jj=0;jj<vtx->neigh_no;jj++){ |
| | | edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; |
| | | edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; |
| | | edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; |
| | | |
| | | return TS_SUCCESS; |
| | | |
| | | it=vtx; |
| | | k=vtx->neigh[jj]; |
| | | nei=0; |
| | | for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k |
| | | if(it->neigh[i]==k){ |
| | | nei=i; |
| | | break; |
| | | } |
| | | } |
| | | neip=nei+1; // I don't like it.. Smells like I must have it in correct order |
| | | neim=nei-1; |
| | | if(neip>=it->neigh_no) neip=0; |
| | | if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not |
| | | there the neim is never <0 !!! */ |
| | | // fprintf(stderr,"The numbers are: %u %u\n",neip, neim); |
| | | km=it->neigh[neim]; // We located km and kp |
| | | kp=it->neigh[neip]; |
| | | |
| | | if(km==NULL || kp==NULL){ |
| | | fatal("In bondflip, cannot determine km and kp!",999); |
| | | } |
| | | |
| | | for(i=0;i<it->tristar_no;i++){ |
| | | for(j=0;j<k->tristar_no;j++){ |
| | | if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik |
| | | if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1] |
| | | == km || it->tristar[i]->vertex[2]== km )){ |
| | | lm=it->tristar[i]; |
| | | // lmidx=i; |
| | | } |
| | | else |
| | | { |
| | | lp=it->tristar[i]; |
| | | // lpidx=i; |
| | | } |
| | | |
| | | } |
| | | } |
| | | } |
| | | if(lm==NULL || lp==NULL) fatal("ts_flip_bond: Cannot find triangles lm and lp!",999); |
| | | |
| | | |
| | | /* |
| | | // We find lm and lp from k->tristar ! |
| | | cnt=0; |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | for(j=0;j<vtx->neigh[jj]->tristar_no;j++){ |
| | | if((vtx->tristar[i] == vtx->neigh[jj]->tristar[j])){ //ce gre za skupen trikotnik |
| | | triedge[cnt]=vtx->tristar[i]; |
| | | cnt++; |
| | | } |
| | | } |
| | | } |
| | | if(cnt!=2) fatal("ts_energy_vertex: both triangles not found!", 133); |
| | | */ |
| | | |
| | | sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2)); |
| | | |
| | | edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm; |
| | | edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm; |
| | | edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm; |
| | | |
| | | |
| | | edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]); |
| | | edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]); |
| | | edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]); |
| | | |
| | | printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]); |
| | | |
| | | } |
| | | for(i=0; i<vtx->tristar_no; i++){ |
| | | vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area; |
| | | vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area; |
| | | vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area; |
| | | } |
| | | printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z); |
| | | vtx->energy=0.0; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ |
| | | int i; |
| | | for(i=0;i<vesicle->blist->n;i++){ |
| | | attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w); |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){ |
| | | |
| | | if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){ |
| | | bond->energy=-w; |
| | | } |
| | | else { |
| | | bond->energy=0.0; |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){ |
| | | if(fabs(vtx->c)<1e-15) return 0.0; |
| | | // printf("was here"); |
| | | if(fabs(vesicle->tape->F)<1e-15) return 0.0; |
| | | |
| | | ts_double norml,ddp=0.0; |
| | | ts_uint i; |
| | | ts_double xnorm=0.0,ynorm=0.0,znorm=0.0; |
| | | /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */ |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | xnorm+=vtx->tristar[i]->xnorm; |
| | | ynorm+=vtx->tristar[i]->ynorm; |
| | | znorm+=vtx->tristar[i]->znorm; |
| | | } |
| | | /*normalize*/ |
| | | norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); |
| | | xnorm/=norml; |
| | | ynorm/=norml; |
| | | znorm/=norml; |
| | | /*calculate ddp, perpendicular displacement*/ |
| | | ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z); |
| | | /*calculate dE*/ |
| | | // printf("ddp=%e",ddp); |
| | | return vesicle->tape->F*ddp; |
| | | |
| | | } |
| | | |
| | | void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){ |
| | | triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2); |
| | | } |