| | |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | |
| | | // plane confinement test |
| | | if(vesicle->tape->plane_confinement_switch){ |
| | | if(vtx->z > vesicle->confinement_plane.z_max || vtx->z < vesicle->confinement_plane.z_min){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); |
| | |
| | | delta_energy+=delta_energy_cv; |
| | | // fprintf(stderr,"Denergy after=%e\n",delta_energy); |
| | | } |
| | | /* Vertices with spontaneous curvature may have spontaneous force perpendicular to the surface of the vesicle. additional delta energy is calculated in this function */ |
| | | delta_energy+=direct_force_energy(vesicle,vtx,backupvtx); |
| | | /* No poly-bond energy for now! |
| | | if(vtx->grafted_poly!=NULL){ |
| | | delta_energy+= |
| | |
| | | // fprintf(stderr, "DE=%f\n",delta_energy); |
| | | //MONTE CARLOOOOOOOO |
| | | // if(vtx->c!=0.0) printf("DE=%f\n",delta_energy); |
| | | // plane confinement |
| | | if(vesicle->tape->plane_confinement_switch){ |
| | | //if planes are not close enough, then repusion force is on |
| | | if(vesicle->confinement_plane.z_max-vesicle->confinement_plane.z_min > vesicle->tape->plane_d){ |
| | | //ts_fprintf(stderr,"force!!!\n"); |
| | | delta_energy-=vesicle->tape->plane_F * ( 1.0/pow(backupvtx->z-vesicle->confinement_plane.z_min,2) + 1.0/pow(-backupvtx->z+vesicle->confinement_plane.z_max,2) ); |
| | | delta_energy+=vesicle->tape->plane_F * ( 1.0/pow(vtx->z-vesicle->confinement_plane.z_min,2) + +1.0/pow(-vtx->z+vesicle->confinement_plane.z_max,2) ); |
| | | |
| | | } |
| | | } |
| | | // end plane confinement |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48()) |