| | |
| | | |
| | | ts_bool sph_free(ts_spharm *sph){ |
| | | int i,j; |
| | | if(sph==NULL) return TS_FAIL; |
| | | for(i=0;i<sph->l;i++){ |
| | | if(sph->ulm[i]!=NULL) free(sph->ulm[i]); |
| | | if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]); |
| | |
| | | K=-sqrt(1.0/(M_PI))*cos(m*fi); |
| | | } |
| | | |
| | | return K*sqrt((2.0*l+1.0)/2.0*fac1/fac2)*plgndr(l,abs(m),cos(theta)); |
| | | return K*sqrt((2.0*l+1.0)/2.0*(ts_double)(fac1/fac2))*plgndr(l,abs(m),cos(theta)); |
| | | } |
| | | |
| | | |
| | |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | coord->e1=sqrt(x*x+y*y+z*z); |
| | | if(z==0) coord->e3=M_PI/2.0; |
| | | else coord->e3=atan(sqrt(x*x+y*y)/z); |
| | | else coord->e3=atan2(sqrt(x*x+y*y),z); |
| | | coord->e2=atan2(y,x); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool sph2cart(ts_coord *coord){ |
| | | coord->coord_type=TS_COORD_CARTESIAN; |
| | | ts_double x,y,z; |
| | | |
| | | x=coord->e1*cos(coord->e2)*sin(coord->e3); |
| | | y=coord->e1*sin(coord->e2)*sin(coord->e3); |
| | | z=coord->e1*cos(coord->e3); |
| | | |
| | | coord->e1=x; |
| | | coord->e2=y; |
| | | coord->e3=z; |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | /* Function returns radius of the sphere with the same volume as vesicle (r0) */ |
| | | ts_double getR0(ts_vesicle *vesicle){ |
| | | ts_double r0; |