| | |
| | | #include<general.h> |
| | | #include<cross-section.h> |
| | | #include<coord.h> |
| | | |
| | | #include<cairo/cairo.h> |
| | | /** @brief Calculates cross-section of vesicle with plane. |
| | | * |
| | | * Function returns points of cross-section of vesicle with plane. Plane is described with equation $ax+by+cz+d=0$. Algorithm extracts coordinates of each vertex of a vesicle and then: |
| | |
| | | * if a distance of point to plane (given by equation $D=\frac{ax_0+by_0+cz_0+d}{\sqrt{a^2+b^2+c^2}}$, where $x_0$, $y_0$ and $z_0$ are coordinates of a given vertex) is less than maximal allowed distance between vertices {\tt sqrt(vesicle->dmax)} than vertex is a candidate for crossection calculation. |
| | | * |
| | | */ |
| | | ts_coord_list get_crossection_with_plane(ts_vesicle vesicle,ts_double a,ts_double b,ts_double c, ts_double d){ |
| | | ts_coord_list *get_crossection_with_plane(ts_vesicle *vesicle,ts_double a,ts_double b,ts_double c, ts_double d){ |
| | | |
| | | |
| | | ts_uint i, j, k; |
| | | ts_uint i, j,k,l; |
| | | ts_double pp,Dsq; // distance from the plane squared |
| | | ts_double ppn,Dsqn; // distance from the plane squared of a neighbor |
| | | ts_double u; //factor to scale vector from first vector to the second to get intersection |
| | | ts_double ppn1; // distance from the plane squared of a neighbor |
| | | ts_vertex *vtx; |
| | | |
| | | ts_uint ntria=0; // number triangles |
| | | ts_triangle *tria[2]; // list of triangles |
| | | ts_coord_list *pts=init_coord_list(); |
| | | for(i=0;i<vesicle->vlist->N;i++){ |
| | | for(i=0;i<vesicle->vlist->n;i++){ |
| | | vtx=vesicle->vlist->vtx[i]; |
| | | |
| | | pp=vtx->x*a+vtx->y*b+vtx->z*c+d; |
| | | Dsq=pp*pp/(a*a+b*b+c*c); |
| | | if(Dsq<vesicle->dmax){ |
| | | for(j=0;j<vtx->neigh_no;j++){ |
| | | ppn=vtx->neigh[j]->x*a+vtx->neigh[j]->y*b+vtx->neigh[j]->z*c+d; |
| | | if(pp*ppn<0){ //the combination of vertices are good candidates for a crossection |
| | | u=pp/(a*(vtx->x-vtx->neigh[j]->x)+b*(vtx->y-vtx->neigh[j]->y)+c(vtx->z-vtx->neigh[j]->z)); |
| | | add_coord(pts, vtx->x+u(vtx->neigh[j]->x - vtx->x), |
| | | vtx->y+u(vtx->neigh[j]->y - vtx->y), |
| | | vtx->z+u(vtx->neigh[j]->z - vtx->z), |
| | | TS_COORD_CARTESIAN); |
| | | ppn1=vtx->neigh[j]->x*a+vtx->neigh[j]->y*b+vtx->neigh[j]->z*c+d; |
| | | if(pp*ppn1<=0.0){ //the combination of vertices are good candidates for a crossection |
| | | //find triangle that belongs to the two vertices |
| | | ntria=0; |
| | | for(k=0;k<vtx->tristar_no;k++){ |
| | | if(vtx->tristar[k]->vertex[0]==vtx && ( vtx->tristar[k]->vertex[1]==vtx->neigh[j] || vtx->tristar[k]->vertex[2]==vtx->neigh[j]) ){ |
| | | //triangle found. |
| | | tria[ntria]=vtx->tristar[k]; |
| | | ntria++; |
| | | } |
| | | } |
| | | if(ntria==0) continue; // no need to continue |
| | | //find the two intersections (in general) to form a intersection line |
| | | for(l=0;l<ntria;l++){ |
| | | //we add intersection line between two points for each of the triangles found above. |
| | | add_crosssection_point(pts,a,b,c,d,tria[l]->vertex[0], tria[l]->vertex[1]); |
| | | add_crosssection_point(pts,a,b,c,d,tria[l]->vertex[0], tria[l]->vertex[2]); |
| | | add_crosssection_point(pts,a,b,c,d,tria[l]->vertex[1], tria[l]->vertex[2]); |
| | | |
| | | } |
| | | } |
| | | } |
| | | } |
| | |
| | | } |
| | | |
| | | |
| | | |
| | | ts_bool add_crosssection_point(ts_coord_list *pts, ts_double a, ts_double b, ts_double c, ts_double d, ts_vertex *vtx1, ts_vertex *vtx2){ |
| | | ts_double pp=vtx1->x*a+vtx1->y*b+vtx1->z*c+d; |
| | | ts_double pp2=vtx2->x*a+vtx1->y*b+vtx2->z*c+d; |
| | | if(pp*pp2<=0.0){ |
| | | ts_double u=pp/(a*(vtx1->x-vtx2->x)+b*(vtx1->y-vtx2->y)+c*(vtx1->z-vtx2->z)); |
| | | add_coord(pts, vtx1->x+u*(vtx2->x - vtx1->x), |
| | | vtx1->y+u*(vtx2->y - vtx1->y), |
| | | vtx1->z+u*(vtx2->z - vtx1->z), |
| | | TS_COORD_CARTESIAN); |
| | | |
| | | return TS_SUCCESS; |
| | | } else { |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | /** Saves calculated crossection as a png image */ |
| | | ts_bool crossection_to_png(ts_coord_list *pts, char *filename){ |
| | | |
| | | cairo_surface_t *surface; |
| | | cairo_t *cr; |
| | | ts_uint i; |
| | | surface = cairo_image_surface_create (CAIRO_FORMAT_RGB24, 1800, 1800); |
| | | cr = cairo_create (surface); |
| | | cairo_rectangle(cr, 0.0, 0.0, 1800,1800); |
| | | cairo_set_source_rgb(cr, 0.3, 0.3, 0.3); |
| | | cairo_fill(cr); |
| | | cairo_set_line_width (cr, 5.0/30.0); |
| | | cairo_set_line_cap(cr, CAIRO_LINE_CAP_ROUND); |
| | | cairo_set_line_join(cr, CAIRO_LINE_JOIN_ROUND); |
| | | cairo_translate(cr, 900,900); |
| | | cairo_scale (cr, 30, 30); |
| | | cairo_set_source_rgb (cr, 1.0, 1.0, 1.0); |
| | | |
| | | for(i=0;i<pts->n;i+=2){ |
| | | cairo_move_to(cr, pts->coord[i]->e1, pts->coord[i]->e2); |
| | | cairo_line_to(cr, pts->coord[i+1]->e1, pts->coord[i+1]->e2); |
| | | } |
| | | cairo_stroke(cr); |
| | | cairo_surface_write_to_png (surface,filename); |
| | | cairo_surface_finish (surface); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool save_crossection_snapshot(ts_coord_list *pts, ts_uint timestepno){ |
| | | char filename[255]; |
| | | sprintf(filename,"timestep_%.6u.png",timestepno); |
| | | crossection_to_png(pts,filename); |
| | | return TS_SUCCESS; |
| | | } |