| | |
| | | } |
| | | |
| | | |
| | | ts_poly_list *init_poly_list(ts_uint n_poly, ts_uint n_mono, ts_vertex_list *vlist, ts_vesicle *vesicle){ |
| | | ts_poly_list *poly_list=(ts_poly_list *)calloc(1,sizeof(ts_poly_list)); |
| | | poly_list->poly = (ts_poly **)calloc(n_poly,sizeof(ts_poly *)); |
| | | ts_uint i=0,j=0,k; //idx; |
| | | ts_uint gvtxi; |
| | | ts_double xnorm,ynorm,znorm,normlength; |
| | | ts_double dphi,dh; |
| | | cell_occupation(vesicle); //needed for evading the membrane |
| | | // Grafting polymers: |
| | | if (vlist!=NULL){ |
| | | if (n_poly > vlist->n){fatal("Number of polymers larger than numbero f vertices on a vesicle.",310);} |
| | | |
| | | while(i<n_poly){ |
| | | gvtxi = rand() % vlist->n; |
| | | if (vlist->vtx[gvtxi]->grafted_poly == NULL){ |
| | | poly_list->poly[i] = init_poly(n_mono, vlist->vtx[gvtxi]); |
| | | i++; |
| | | } |
| | | } |
| | | } |
| | | else |
| | | { |
| | | for(i=0;i<n_poly;i++){ |
| | | poly_list->poly[i] = init_poly(n_mono, NULL); |
| | | } |
| | | } |
| | | |
| | | poly_list->n = n_poly; |
| | | |
| | | if (vlist!=NULL){ |
| | | ts_bool poly_initial_distribution(ts_poly_list *poly_list, ts_int i, ts_vesicle *vesicle){ |
| | | /* Make straight grafted poylmers normal to membrane (polymer brush). Dist. between poly vertices put to 1*/ |
| | | ts_double xnorm,ynorm,znorm,normlength; |
| | | ts_int intpoly=vesicle->tape->internal_poly; |
| | | ts_int cellidx; |
| | | ts_double posX,posY,posZ,prevPosX,prevPosY,prevPosZ, phi,costheta,sintheta; |
| | | ts_bool retval; |
| | | ts_int l; |
| | | for (i=0;i<poly_list->n;i++){ |
| | | |
| | | ts_int j,k,l,m; |
| | | xnorm=0.0; |
| | | ynorm=0.0; |
| | | znorm=0.0; |
| | |
| | | xnorm=xnorm/normlength; |
| | | ynorm=ynorm/normlength; |
| | | znorm=znorm/normlength; |
| | | |
| | | //prepare starting position for building the polymeres |
| | | prevPosX=poly_list->poly[i]->grafted_vtx->x; |
| | | prevPosY=poly_list->poly[i]->grafted_vtx->y; |
| | |
| | | //} |
| | | //trying to go towards normal |
| | | k=0; |
| | | l=0; |
| | | while(1){ |
| | | poly_list->poly[i]->vlist->vtx[j]->x = posX; |
| | | poly_list->poly[i]->vlist->vtx[j]->y = posY; |
| | | poly_list->poly[i]->vlist->vtx[j]->z = posZ; |
| | | cellidx=vertex_self_avoidance(vesicle, poly_list->poly[i]->vlist->vtx[j]); |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,poly_list->poly[i]->vlist->vtx[j]); |
| | | |
| | | if(retval==TS_SUCCESS){ |
| | | //retval=cell_add_vertex(vesicle->clist->cell[cellidx],poly_list->poly[i]->vlist->vtx[j]); |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],poly_list->poly[i]->vlist->vtx[j]); |
| | | break; |
| | | } |
| | | else{ |
| | | // printf("%d %d Cannot put the vertex here. Finding another position\n",i,j); |
| | | //randomly change the direction. |
| | | do{ |
| | | costheta=2.0*drand48()-1.0; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | phi=drand48()*2.0*M_PI; |
| | | if(j==0){ |
| | | //for special cases, when we are on the edge of bipytamid the distance od dmin_interspecies is not enough |
| | | posX=prevPosX+vesicle->dmax*sintheta*cos(phi); |
| | | posY=prevPosY+vesicle->dmax*sintheta*sin(phi); |
| | | posZ=prevPosZ+vesicle->dmax*costheta; |
| | | |
| | | |
| | | } else { |
| | | posX=prevPosX+vesicle->clist->dmin_interspecies*sintheta*cos(phi); |
| | | posY=prevPosY+vesicle->clist->dmin_interspecies*sintheta*sin(phi); |
| | | posZ=prevPosZ+vesicle->clist->dmin_interspecies*costheta; |
| | | } |
| | | // if(j>0) break; |
| | | // if((xnorm*sintheta*cos(phi)+ynorm*sintheta*sin(phi)+znorm*costheta)<0.0 && j==0) break; |
| | | } |
| | | // while(j==0); |
| | | m=0; |
| | | //we must move first vertex into the vesicle if the normal is in or out of the vesicle if the normal is out |
| | | do{ |
| | | costheta=2.0*drand48()-1.0; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | phi=drand48()*2.0*M_PI; |
| | | if(j==0){ |
| | | //for special cases, when we are on the edge of bipyramid the distance od dmin_interspecies is not enough |
| | | posX=prevPosX+vesicle->dmax*sintheta*cos(phi); |
| | | posY=prevPosY+vesicle->dmax*sintheta*sin(phi); |
| | | posZ=prevPosZ+vesicle->dmax*costheta; |
| | | |
| | | } else { |
| | | posX=prevPosX+vesicle->clist->dmin_interspecies*sintheta*cos(phi); |
| | | posY=prevPosY+vesicle->clist->dmin_interspecies*sintheta*sin(phi); |
| | | posZ=prevPosZ+vesicle->clist->dmin_interspecies*costheta; |
| | | } |
| | | m++; |
| | | if(m>1000) { |
| | | k=9999; //break also ot of the outer loop |
| | | printf("was here\n"); |
| | | break; |
| | | } |
| | | } |
| | | while((xnorm*(poly_list->poly[i]->grafted_vtx->x-posX)+ynorm*(poly_list->poly[i]->grafted_vtx->y-posY)+znorm*(poly_list->poly[i]->grafted_vtx->z-posZ))>0.0 && j==0); |
| | | } |
| | | k++; |
| | | if(k>1000){ |
| | | //lets choose another grafting vertex; |
| | | while(1){ |
| | | gvtxi = rand() % vesicle->vlist->n; |
| | | if (vesicle->vlist->vtx[gvtxi]->grafted_poly == NULL){ |
| | | ts_fprintf(stdout,"Found new potential grafting vertex %d for poly %d\n",gvtxi,i); |
| | | poly_list->poly[i]->grafted_vtx->grafted_poly=NULL; |
| | | poly_list->poly[i]->grafted_vtx = vesicle->vlist->vtx[gvtxi]; |
| | | vesicle->vlist->vtx[gvtxi]->grafted_poly = poly_list->poly[i]; |
| | | l++; |
| | | k=0; |
| | | xnorm=0.0; |
| | | ynorm=0.0; |
| | | znorm=0.0; |
| | | int o; |
| | | for (o=0;o<poly_list->poly[i]->grafted_vtx->tristar_no;o++){ |
| | | xnorm-=poly_list->poly[i]->grafted_vtx->tristar[o]->xnorm; |
| | | ynorm-=poly_list->poly[i]->grafted_vtx->tristar[o]->ynorm; |
| | | znorm-=poly_list->poly[i]->grafted_vtx->tristar[o]->znorm; |
| | | } |
| | | normlength=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); |
| | | if(intpoly && i%2){ |
| | | normlength=-normlength; |
| | | } |
| | | xnorm=xnorm/normlength; |
| | | ynorm=ynorm/normlength; |
| | | znorm=znorm/normlength; |
| | | prevPosX=poly_list->poly[i]->grafted_vtx->x; |
| | | prevPosY=poly_list->poly[i]->grafted_vtx->y; |
| | | prevPosZ=poly_list->poly[i]->grafted_vtx->z; |
| | | //prepare starting position for building the polymeres |
| | | posX=prevPosX+xnorm*(vesicle->clist->dmin_interspecies); |
| | | posY=prevPosY+ynorm*(vesicle->clist->dmin_interspecies); |
| | | posZ=prevPosZ+znorm*(vesicle->clist->dmin_interspecies); |
| | | break; |
| | | } |
| | | //undo changes to the cell |
| | | for(l=0;l<j;l++){ |
| | | cellidx=vertex_self_avoidance(vesicle, poly_list->poly[i]->vlist->vtx[l]); |
| | | cell_remove_vertex(vesicle->clist->cell[cellidx],poly_list->poly[i]->vlist->vtx[l]); |
| | | } |
| | | if(l>1000) |
| | | fatal("Cannot make internal polymeres. No space inside the vesicle?",1001); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | prevPosX=posX; |
| | | prevPosY=posY; |
| | | prevPosZ=posZ; |
| | | } |
| | | printf("did it\n"); |
| | | return TS_SUCCESS; |
| | | |
| | | } |
| | | |
| | | |
| | | ts_poly_list *init_poly_list(ts_uint n_poly, ts_uint n_mono, ts_vertex_list *vlist, ts_vesicle *vesicle){ |
| | | ts_poly_list *poly_list=(ts_poly_list *)calloc(1,sizeof(ts_poly_list)); |
| | | poly_list->poly = (ts_poly **)calloc(n_poly,sizeof(ts_poly *)); |
| | | ts_uint i=0,j=0; //idx; |
| | | ts_uint gvtxi; |
| | | ts_bool retval; |
| | | ts_double dphi,dh; |
| | | cell_occupation(vesicle); //needed for evading the membrane |
| | | // Grafting polymers: |
| | | int tries=0; |
| | | if (vlist!=NULL){ |
| | | if (n_poly > vlist->n){fatal("Number of polymers larger than numbero f vertices on a vesicle.",310);} |
| | | while(i<n_poly){ |
| | | gvtxi = rand() % vlist->n; |
| | | if (vlist->vtx[gvtxi]->grafted_poly == NULL){ |
| | | poly_list->poly[i] = init_poly(n_mono, vlist->vtx[gvtxi]); |
| | | retval=poly_initial_distribution(poly_list, i, vesicle); |
| | | if(retval==TS_FAIL){ |
| | | ts_fprintf(stdout,"Found new potential grafting vertex %d for poly %d\n",gvtxi,i); |
| | | poly_free(poly_list->poly[i]); |
| | | tries++; |
| | | } |
| | | else { |
| | | tries=0; |
| | | i++; |
| | | } |
| | | if(tries>5000){ |
| | | fatal("Cannot find space for inner polymeres",1001); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | else |
| | | { |
| | | for(i=0;i<n_poly;i++){ |
| | | poly_list->poly[i] = init_poly(n_mono, NULL); |
| | | } |
| | | } |
| | | |
| | | poly_list->n = n_poly; |
| | | |
| | | if (vlist!=NULL){ |
| | | } |
| | | else |
| | | { |
| | |
| | | |
| | | ts_bool poly_free(ts_poly *poly){ |
| | | |
| | | if (poly->grafted_vtx!=NULL){ |
| | | poly->grafted_vtx->grafted_poly=NULL; |
| | | } |
| | | // if (poly->grafted_vtx!=NULL){ |
| | | // poly->grafted_vtx->grafted_poly=NULL; |
| | | // } |
| | | vtx_list_free(poly->vlist); |
| | | bond_list_free(poly->blist); |
| | | free(poly); |
| | |
| | | |
| | | ts_bool poly_list_free(ts_poly_list *poly_list){ |
| | | ts_uint i; |
| | | |
| | | //fprintf(stderr,"no. of polys=%d\n", poly_list->n); |
| | | for(i=0;i<poly_list->n;i++){ |
| | | // fprintf(stderr,"%d poly address in mem=%ld\n",i+1,(long)&(poly_list->poly[i])); |
| | | poly_free(poly_list->poly[i]); |
| | | } |
| | | free(poly_list->poly); |