| | |
| | | } |
| | | |
| | | /* Gives you legendre polynomials. Taken from NR, p. 254 */ |
| | | ts_double plgndr(ts_int l, ts_int m, ts_float x){ |
| | | ts_double plgndr(ts_int l, ts_int m, ts_double x){ |
| | | ts_double fact, pll, pmm, pmmp1, somx2; |
| | | ts_int i,ll; |
| | | |
| | |
| | | } |
| | | |
| | | |
| | | /*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ |
| | | /** @brief: Computes Y(l,m,theta,fi) |
| | | * |
| | | * Function calculates Y^l_m for vertex with given (\theta, \fi) coordinates in |
| | | * spherical coordinate system. |
| | | * @param l is an ts_int argument. |
| | | * @param m is an ts_int argument. |
| | | * @param theta is ts_double argument. |
| | | * @param fi is a ts_double argument. |
| | | * |
| | | * (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ |
| | | ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){ |
| | | ts_double fac1, fac2, K; |
| | | int i; |
| | |
| | | r=sqrtl(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); |
| | | #endif |
| | | cvtx->relR=(r-r0)/r0; |
| | | cvtx->solAngle=cvtx->projArea/cvtx->relR * cvtx->projArea/cvtx->relR; |
| | | cvtx->solAngle=cvtx->projArea/r/r; |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | |
| | | |
| | | |
| | | ts_bool calculateYlmi(ts_vesicle *vesicle){ |
| | | ts_uint i,j,k; |
| | | ts_int i,j,k; |
| | | ts_spharm *sph=vesicle->sphHarmonics; |
| | | ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord)); |
| | | ts_double fi, theta; |
| | | ts_int m; |
| | | ts_vertex *cvtx; |
| | | for(k=0;k<vesicle->vlist->n;k++){ |
| | | cvtx=vesicle->vlist->vtx[k]; |
| | |
| | | cart2sph(coord,cvtx->x, cvtx->y, cvtx->z); |
| | | fi=coord->e2; |
| | | theta=coord->e3; |
| | | for(i=0; i<sph->l; i++){ |
| | | for(i=1; i<sph->l; i++){ |
| | | for(j=0;j<i;j++){ |
| | | sph->Ylmi[i][j][k]=sph->co[i][j]*cos((j-i-1)*fi)*pow(-1,j-i-1)*plgndr(i,abs(j-i-1),cos(theta)); |
| | | m=j+1; |
| | | //Nastudiraj!!!!! |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*cos((m-i-1)*fi)*pow(-1,m-i-1)*plgndr(i,abs(m-i-1),cos(theta)); |
| | | if(i==2 && j==0){ |
| | | /* fprintf(stderr," **** vtx %d ****\n", k+1); |
| | | fprintf(stderr,"m-i-1 =%d\n",m-i-1); |
| | | fprintf(stderr,"fi =%e\n",fi); |
| | | fprintf(stderr,"(m-i-1)*fi =%e\n",((ts_double)(m-i-1))*fi); |
| | | fprintf(stderr,"-2*fi =%e\n",-2*fi); |
| | | fprintf(stderr,"m =%d\n",m); |
| | | |
| | | fprintf(stderr," cos(m-i-1)=%e\n",cos((m-i-1)*fi)); |
| | | fprintf(stderr," cos(-2*fi)=%e\n",cos(-2*fi)); |
| | | fprintf(stderr," sph->co[i][m]=%e\n",sph->co[i][m]); |
| | | fprintf(stderr," plgndr(i,abs(m-i-1),cos(theta))=%e\n",plgndr(i,abs(m-i-1),cos(theta))); |
| | | */ |
| | | } |
| | | } |
| | | sph->Ylmi[i][j+1][k]=sph->co[i][j+1]*plgndr(i,0,cos(theta)); |
| | | for(j=sph->l;j<2*i;j++){ |
| | | sph->Ylmi[i][j][k]=sph->co[i][j]*sin((j-i-1)*fi)*plgndr(i,j-i-1,cos(theta)); |
| | | //Nastudiraj!!!!! |
| | | j=i; |
| | | m=j+1; |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*plgndr(i,0,cos(theta)); |
| | | for(j=i+1;j<2*i+1;j++){ |
| | | m=j+1; |
| | | //Nastudiraj!!!!! |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*sin((m-i-1)*fi)*plgndr(i,m-i-1,cos(theta)); |
| | | } |
| | | } |
| | | |
| | |
| | | for(k=0;k<vesicle->vlist->n; k++){ |
| | | cvtx=vesicle->vlist->vtx[k]; |
| | | for(i=0;i<vesicle->sphHarmonics->l;i++){ |
| | | for(j=0;j<2*i;j++){ |
| | | for(j=0;j<2*i+1;j++){ |
| | | vesicle->sphHarmonics->ulm[i][j]+= cvtx->solAngle*cvtx->relR*vesicle->sphHarmonics->Ylmi[i][j][k]; |
| | | } |
| | | |