Trisurf Monte Carlo simulator
Samo Penic
2020-07-06 384af9d04809481663a9fb350212b5e5880955aa
src/energy.c
@@ -6,8 +6,9 @@
#include "bond.h"
#include<math.h>
#include<stdio.h>
#include <gsl/gsl_vector_complex.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_eigen.h>
/** @brief Wrapper that calculates energy of every vertex in vesicle
 *  
 *  Function calculated energy of every vertex in vesicle. It can be used in
@@ -88,7 +89,7 @@
 * @returns TS_SUCCESS on successful calculation.
*/
inline ts_bool energy_vertex(ts_vertex *vtx){
    ts_uint jj, i, j, cnt=0;
    ts_uint jj, i, j;
    ts_double edge_vector_x[7]={0,0,0,0,0,0,0};
    ts_double edge_vector_y[7]={0,0,0,0,0,0,0};
    ts_double edge_vector_z[7]={0,0,0,0,0,0,0};
@@ -101,48 +102,155 @@
    ts_double vertex_normal_x=0.0;
    ts_double vertex_normal_y=0.0;
    ts_double vertex_normal_z=0.0;
    ts_triangle *triedge[2]={NULL,NULL};
//    ts_triangle *triedge[2]={NULL,NULL};
    ts_uint nei,neip,neim;
    ts_vertex *it, *k, *kp,*km;
    ts_triangle *lm=NULL, *lp=NULL;
    ts_double sumnorm;
    ts_double Se11, Se21, Se22, Se31, Se32, Se33;
    ts_double Pv11, Pv21, Pv22, Pv31, Pv32, Pv33;
    ts_double We;
    ts_double Av, We_Av;
   gsl_matrix *gsl_Sv=gsl_matrix_alloc(3,3);
   gsl_vector_complex *Sv_eigen=gsl_vector_complex_alloc(3);
   gsl_eigen_nonsymm_workspace *workspace=gsl_eigen_nonsymm_alloc(3);
   ts_double mprod[7], phi[7], he[7];
   ts_double Sv[3][3]={{0,0,0},{0,0,0},{0,0,0}};
    // Here edge vector is calculated
//    fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no);
    for(jj=0;jj<vtx->neigh_no;jj++){
   edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x;
   edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y;
   edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z;
   // We find lm and lp from k->tristar !
   cnt=0;
       for(i=0;i<vtx->tristar_no;i++){
           for(j=0;j<vtx->neigh[jj]->tristar_no;j++){
                  if((vtx->tristar[i] == vtx->neigh[jj]->tristar[j])){ //ce gre za skupen trikotnik
                      triedge[cnt]=vtx->tristar[i];
            cnt++;
                  }
   Av=0;
   for(i=0; i<vtx->tristar_no; i++){
      vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area;
      vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area;
      vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area;
      Av+=vtx->tristar[i]->area/3;
   }
   Pv11=1-vertex_normal_x*vertex_normal_x;
   Pv22=1-vertex_normal_y*vertex_normal_y;
   Pv33=1-vertex_normal_z*vertex_normal_z;
   Pv21=vertex_normal_x*vertex_normal_y;
   Pv31=vertex_normal_x*vertex_normal_z;
   Pv32=vertex_normal_y*vertex_normal_z;
//   printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z);
   it=vtx;
   k=vtx->neigh[jj];
   nei=0;
       for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k
           if(it->neigh[i]==k){
               nei=i;
               break;
           }
       }
   if(cnt!=2) fatal("ts_energy_vertex: both triangles not found!", 133);
   sumnorm=sqrt( pow((triedge[0]->xnorm + triedge[1]->xnorm),2) + pow((triedge[0]->ynorm + triedge[1]->ynorm), 2) + pow((triedge[0]->znorm + triedge[1]->znorm), 2));
       neip=nei+1;  // I don't like it.. Smells like I must have it in correct order
       neim=nei-1;
       if(neip>=it->neigh_no) neip=0;
       if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not
there the neim is never <0 !!! */
  //  fprintf(stderr,"The numbers are: %u %u\n",neip, neim);
       km=it->neigh[neim];  // We located km and kp
       kp=it->neigh[neip];
   edge_normal_x[jj]=(triedge[0]->xnorm+ triedge[1]->xnorm)/sumnorm;
   edge_normal_y[jj]=(triedge[0]->ynorm+ triedge[1]->ynorm)/sumnorm;
   edge_normal_z[jj]=(triedge[0]->znorm+ triedge[1]->znorm)/sumnorm;
       if(km==NULL || kp==NULL){
           fatal("energy_vertex: cannot determine km and kp!",233);
       }
   for(i=0;i<it->tristar_no;i++){
        for(j=0;j<k->tristar_no;j++){
            if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik
                if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1]
== km || it->tristar[i]->vertex[2]== km )){
                lm=it->tristar[i];
         //       lmidx=i;
                }
                else
                {
                lp=it->tristar[i];
         //       lpidx=i;
                }
            }
        }
    }
if(lm==NULL || lp==NULL) fatal("energy_vertex: Cannot find triangles lm and lp!",233);
   sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2));
   edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm;
   edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm;
   edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm;
   edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]);
   edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]);
   edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]);
   printf("(%f %f %f); (%f %f %f); (%f %f %f), %d\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj],triedge[0]->idx);
   mprod[jj]=it->x*(k->y*edge_vector_z[jj]-edge_vector_y[jj]*k->z)-it->y*(k->x*edge_vector_z[jj]-k->z*edge_vector_x[jj])+it->z*(k->x*edge_vector_y[jj]-k->y*edge_vector_x[jj]);
   phi[jj]=copysign(acos(lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm),mprod[jj])+M_PI;
   he[jj]=2.0*sqrt( pow((edge_vector_x[jj]*2),2) + pow((edge_vector_y[jj]*2), 2) + pow((edge_vector_z[jj]*2), 2))*cos(phi[jj]/2.0);
   Se11=edge_binormal_x[jj]*edge_binormal_x[jj]*he[jj];
   Se21=edge_binormal_x[jj]*edge_binormal_y[jj]*he[jj];
   Se22=edge_binormal_y[jj]*edge_binormal_y[jj]*he[jj];
   Se31=edge_binormal_x[jj]*edge_binormal_z[jj]*he[jj];
   Se32=edge_binormal_y[jj]*edge_binormal_z[jj]*he[jj];
   Se33=edge_binormal_z[jj]*edge_binormal_z[jj]*he[jj];
   We=vertex_normal_x*edge_normal_x[jj]+vertex_normal_y*edge_normal_y[jj]+vertex_normal_z*edge_normal_z[jj];
   We_Av=We/Av;
   Sv[0][0]+=We_Av* ( Pv11*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv21*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv31*(Pv11*Se31+Pv21*Se32+Pv31*Se33) );
   Sv[0][1]+=We_Av* (Pv21*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv22*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv32*(Pv11*Se31+Pv21*Se32+Pv31*Se33));
   Sv[0][2]+=We_Av* (Pv31*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv32*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv33*(Pv11*Se31+Pv21*Se32+Pv31*Se33));
   Sv[1][0]+=We_Av* (Pv11*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv21*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv31*(Pv21*Se31+Pv22*Se32+Pv32*Se33));
   Sv[1][1]+=We_Av* (Pv21*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv22*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv32*(Pv21*Se31+Pv22*Se32+Pv32*Se33));
   Sv[1][2]+=We_Av* (Pv31*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv32*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv33*(Pv21*Se31+Pv22*Se32+Pv32*Se33));
   Sv[2][0]+=We_Av* (Pv11*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv21*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv31*(Pv31*Se31+Pv32*Se32+Pv33*Se33));
   Sv[2][1]+=We_Av* (Pv21*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv22*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv32*(Pv31*Se31+Pv32*Se32+Pv33*Se33));
   Sv[2][2]+=We_Av* (Pv31*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv32*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv33*(Pv31*Se31+Pv32*Se32+Pv33*Se33));
//   printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]);
    }
   for(i=0; i<vtx->tristar_no; i++){
      vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area;
      vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area;
      vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area;
   }
   printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z);
   gsl_matrix_set(gsl_Sv, 0,0, Sv[0][0]);
   gsl_matrix_set(gsl_Sv, 0,1, Sv[0][1]);
   gsl_matrix_set(gsl_Sv, 0,2, Sv[0][2]);
   gsl_matrix_set(gsl_Sv, 1,0, Sv[1][0]);
   gsl_matrix_set(gsl_Sv, 1,1, Sv[1][1]);
   gsl_matrix_set(gsl_Sv, 1,2, Sv[1][2]);
   gsl_matrix_set(gsl_Sv, 2,0, Sv[2][0]);
   gsl_matrix_set(gsl_Sv, 2,1, Sv[2][1]);
   gsl_matrix_set(gsl_Sv, 2,2, Sv[2][2]);
   gsl_eigen_nonsymm_params(0, 1, workspace);
   gsl_eigen_nonsymm(gsl_Sv, Sv_eigen, workspace);
   printf("Eigenvalues: %f+ i%f, %f+i%f, %f+i%f\n",
   GSL_REAL(gsl_vector_complex_get(Sv_eigen, 0)), GSL_IMAG(gsl_vector_complex_get(Sv_eigen, 0)),
   GSL_REAL(gsl_vector_complex_get(Sv_eigen, 1)), GSL_IMAG(gsl_vector_complex_get(Sv_eigen, 1)),
   GSL_REAL(gsl_vector_complex_get(Sv_eigen, 2)), GSL_IMAG(gsl_vector_complex_get(Sv_eigen, 2))
   );
   vtx->energy=0.0;
   gsl_matrix_free(gsl_Sv);
   gsl_vector_complex_free(Sv_eigen);
   gsl_eigen_nonsymm_free(workspace);
   return TS_SUCCESS;
}