| | |
| | | #include "general.h" |
| | | #include "sh.h" |
| | | |
| | | |
| | | |
| | | ts_spharm *sph_init(ts_vertex_list *vlist, ts_uint l){ |
| | | ts_uint j,i; |
| | | ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm)); |
| | | |
| | | sph->N=0; |
| | | /* lets initialize Ylm for each vertex. */ |
| | | sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **)); |
| | | for(i=0;i<l;i++){ |
| | | sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *)); |
| | | for(j=0;j<(2*i+1);j++){ |
| | | sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double)); |
| | | } |
| | | } |
| | | |
| | | /* lets initialize ulm */ |
| | | sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *)); |
| | | for(j=0;j<l;j++){ |
| | | sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
| | | } |
| | | |
| | | /* lets initialize sum of Ulm2 */ |
| | | sph->sumUlm2=(ts_double **)calloc(l,sizeof(ts_double *)); |
| | | for(j=0;j<l;j++){ |
| | | sph->sumUlm2[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
| | | } |
| | | |
| | | /* lets initialize co */ |
| | | //NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored! |
| | | sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *)); |
| | | for(j=0;j<=l;j++){ |
| | | sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double)); |
| | | } |
| | | |
| | | sph->l=l; |
| | | |
| | | /* Calculate coefficients that will remain constant during all the simulation */ |
| | | precomputeShCoeff(sph); |
| | | |
| | | return sph; |
| | | } |
| | | |
| | | |
| | | ts_bool sph_free(ts_spharm *sph){ |
| | | int i,j; |
| | | if(sph==NULL) return TS_FAIL; |
| | | for(i=0;i<sph->l;i++){ |
| | | if(sph->ulm[i]!=NULL) free(sph->ulm[i]); |
| | | if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]); |
| | | if(sph->co[i]!=NULL) free(sph->co[i]); |
| | | } |
| | | if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]); |
| | | if(sph->co != NULL) free(sph->co); |
| | | if(sph->ulm !=NULL) free(sph->ulm); |
| | | |
| | | if(sph->Ylmi!=NULL) { |
| | | for(i=0;i<sph->l;i++){ |
| | | if(sph->Ylmi[i]!=NULL){ |
| | | for(j=0;j<i*2+1;j++){ |
| | | if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]); |
| | | } |
| | | free(sph->Ylmi[i]); |
| | | } |
| | | } |
| | | free(sph->Ylmi); |
| | | } |
| | | |
| | | free(sph); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /* Gives you legendre polynomials. Taken from NR, p. 254 */ |
| | | ts_double plgndr(ts_int l, ts_int m, ts_float x){ |
| | | ts_double plgndr(ts_int l, ts_int m, ts_double x){ |
| | | ts_double fact, pll, pmm, pmmp1, somx2; |
| | | ts_int i,ll; |
| | | |
| | |
| | | } |
| | | |
| | | |
| | | /*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ |
| | | /** @brief: Precomputes coefficients that are required for spherical harmonics computations. |
| | | |
| | | */ |
| | | ts_bool precomputeShCoeff(ts_spharm *sph){ |
| | | ts_int i,j,al,am; |
| | | ts_double **co=sph->co; |
| | | for(i=1;i<=sph->l;i++){ |
| | | al=i; |
| | | sph->co[i][i+1]=sqrt((2.0*al+1.0)/2.0/M_PI); |
| | | for(j=1;j<=i-1;j++){ |
| | | am=j; |
| | | sph->co[i][i+1+j]=co[i][i+j]*sqrt(1.0/(al-am+1.0)/(al+am)); |
| | | sph->co[i][i+1-j]=co[i][i+1+j]; |
| | | } |
| | | co[i][2*i+1]=co[i][2*i]*sqrt(1.0/(2.0*al)); |
| | | co[i][1]=co[i][2*i+1]; |
| | | co[i][i+1]=sqrt((2.0*al+1.0)/4.0/M_PI); |
| | | } |
| | | return TS_SUCCESS; |
| | | |
| | | } |
| | | |
| | | |
| | | /** @brief: Computes Y(l,m,theta,fi) |
| | | * |
| | | * Function calculates Y^l_m for vertex with given (\theta, \fi) coordinates in |
| | | * spherical coordinate system. |
| | | * @param l is an ts_int argument. |
| | | * @param m is an ts_int argument. |
| | | * @param theta is ts_double argument. |
| | | * @param fi is a ts_double argument. |
| | | * |
| | | * (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ |
| | | ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){ |
| | | ts_double fac1, fac2, K; |
| | | int i; |
| | |
| | | K=-sqrt(1.0/(M_PI))*cos(m*fi); |
| | | } |
| | | |
| | | return K*sqrt((2.0*l+1.0)/2.0*fac1/fac2)*plgndr(l,abs(m),cos(theta)); |
| | | return K*sqrt((2.0*l+1.0)/2.0*(ts_double)(fac1/fac2))*plgndr(l,abs(m),cos(theta)); |
| | | } |
| | | |
| | | |
| | | /* Function transforms coordinates from cartesian to spherical coordinates |
| | | * (r,phi, theta). */ |
| | | ts_bool *cart2sph(ts_coord *coord, ts_double x, ts_double y, ts_double z){ |
| | | coord->coord_type=TS_COORD_SPHERICAL; |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | coord->e1=sqrt(x*x+y*y+z*z); |
| | | if(z==0) coord->e3=M_PI/2.0; |
| | | else coord->e3=atan2(sqrt(x*x+y*y),z); |
| | | coord->e2=atan2(y,x); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | coord->e1=sqrtf(x*x+y*y+z*z); |
| | | if(z==0) coord->e3=M_PI/2.0; |
| | | else coord->e3=atanf(sqrtf(x*x+y*y)/z); |
| | | coord->e2=atan2f(y,x); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | coord->e1=sqrtl(x*x+y*y+z*z); |
| | | if(z==0) coord->e3=M_PI/2.0; |
| | | else coord->e3=atanl(sqrtl(x*x+y*y)/z); |
| | | coord->e2=atan2l(y,x); |
| | | #endif |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool sph2cart(ts_coord *coord){ |
| | | coord->coord_type=TS_COORD_CARTESIAN; |
| | | ts_double x,y,z; |
| | | |
| | | x=coord->e1*cos(coord->e2)*sin(coord->e3); |
| | | y=coord->e1*sin(coord->e2)*sin(coord->e3); |
| | | z=coord->e1*cos(coord->e3); |
| | | |
| | | coord->e1=x; |
| | | coord->e2=y; |
| | | coord->e3=z; |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | /* Function returns radius of the sphere with the same volume as vesicle (r0) */ |
| | | ts_double getR0(ts_vesicle *vesicle){ |
| | | ts_double r0; |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | r0=pow(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | r0=powf(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | r0=powl(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); |
| | | #endif |
| | | return r0; |
| | | } |
| | | |
| | | |
| | | ts_bool preparationSh(ts_vesicle *vesicle, ts_double r0){ |
| | | //TODO: before calling or during the call calculate area of each triangle! Can |
| | | //be also done after vertexmove and bondflip // |
| | | //DONE: in energy calculation! // |
| | | ts_uint i,j; |
| | | ts_vertex **vtx=vesicle->vlist->vtx; |
| | | ts_vertex *cvtx; |
| | | ts_triangle *ctri; |
| | | ts_double centroid[3]; |
| | | ts_double r; |
| | | for (i=0; i<vesicle->vlist->n; i++){ |
| | | cvtx=vtx[i]; |
| | | //cvtx->projArea=4.0*M_PI/1447.0*(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z)/r0/r0; |
| | | cvtx->projArea=0.0; |
| | | |
| | | /* go over all triangles that have a common vertex i */ |
| | | for(j=0; j<cvtx->tristar_no; j++){ |
| | | ctri=cvtx->tristar[j]; |
| | | centroid[0]=(ctri->vertex[0]->x + ctri->vertex[1]->x + ctri->vertex[2]->x)/3.0; |
| | | centroid[1]=(ctri->vertex[0]->y + ctri->vertex[1]->y + ctri->vertex[2]->y)/3.0; |
| | | centroid[2]=(ctri->vertex[0]->z + ctri->vertex[1]->z + ctri->vertex[2]->z)/3.0; |
| | | /* calculating projArea+= area(triangle)*cos(theta) */ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrt(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtf(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtl(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); |
| | | #endif |
| | | } |
| | | |
| | | cvtx->projArea=cvtx->projArea/3.0; |
| | | //we dont store spherical coordinates of vertex, so we have to calculate |
| | | //r(i) at this point. |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | r=sqrt(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | r=sqrtf(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | r=sqrtl(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); |
| | | #endif |
| | | cvtx->relR=(r-r0)/r0; |
| | | cvtx->solAngle=cvtx->projArea/r/r; |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | ts_bool calculateYlmi(ts_vesicle *vesicle){ |
| | | ts_int i,j,k; |
| | | ts_spharm *sph=vesicle->sphHarmonics; |
| | | ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord)); |
| | | ts_double fi, theta; |
| | | ts_int m; |
| | | ts_vertex *cvtx; |
| | | for(k=0;k<vesicle->vlist->n;k++){ |
| | | cvtx=vesicle->vlist->vtx[k]; |
| | | sph->Ylmi[0][0][k]=sqrt(1.0/4.0/M_PI); |
| | | cart2sph(coord,cvtx->x, cvtx->y, cvtx->z); |
| | | fi=coord->e2; |
| | | theta=coord->e3; |
| | | for(i=1; i<sph->l; i++){ |
| | | for(j=0;j<i;j++){ |
| | | m=j+1; |
| | | //Nastudiraj!!!!! |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*cos((m-i-1)*fi)*pow(-1,m-i-1)*plgndr(i,abs(m-i-1),cos(theta)); |
| | | if(i==2 && j==0){ |
| | | /* fprintf(stderr," **** vtx %d ****\n", k+1); |
| | | fprintf(stderr,"m-i-1 =%d\n",m-i-1); |
| | | fprintf(stderr,"fi =%e\n",fi); |
| | | fprintf(stderr,"(m-i-1)*fi =%e\n",((ts_double)(m-i-1))*fi); |
| | | fprintf(stderr,"-2*fi =%e\n",-2*fi); |
| | | fprintf(stderr,"m =%d\n",m); |
| | | |
| | | fprintf(stderr," cos(m-i-1)=%e\n",cos((m-i-1)*fi)); |
| | | fprintf(stderr," cos(-2*fi)=%e\n",cos(-2*fi)); |
| | | fprintf(stderr," sph->co[i][m]=%e\n",sph->co[i][m]); |
| | | fprintf(stderr," plgndr(i,abs(m-i-1),cos(theta))=%e\n",plgndr(i,abs(m-i-1),cos(theta))); |
| | | */ |
| | | } |
| | | } |
| | | //Nastudiraj!!!!! |
| | | j=i; |
| | | m=j+1; |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*plgndr(i,0,cos(theta)); |
| | | for(j=i+1;j<2*i+1;j++){ |
| | | m=j+1; |
| | | //Nastudiraj!!!!! |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*sin((m-i-1)*fi)*plgndr(i,m-i-1,cos(theta)); |
| | | } |
| | | } |
| | | |
| | | } |
| | | free(coord); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | ts_bool calculateUlm(ts_vesicle *vesicle){ |
| | | ts_uint i,j,k; |
| | | ts_vertex *cvtx; |
| | | for(i=0;i<vesicle->sphHarmonics->l;i++){ |
| | | for(j=0;j<2*i+1;j++) vesicle->sphHarmonics->ulm[i][j]=0.0; |
| | | } |
| | | |
| | | //TODO: call calculateYlmi !!! |
| | | |
| | | |
| | | for(k=0;k<vesicle->vlist->n; k++){ |
| | | cvtx=vesicle->vlist->vtx[k]; |
| | | for(i=0;i<vesicle->sphHarmonics->l;i++){ |
| | | for(j=0;j<2*i+1;j++){ |
| | | vesicle->sphHarmonics->ulm[i][j]+= cvtx->solAngle*cvtx->relR*vesicle->sphHarmonics->Ylmi[i][j][k]; |
| | | } |
| | | |
| | | } |
| | | } |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | ts_bool storeUlm2(ts_vesicle *vesicle){ |
| | | |
| | | ts_spharm *sph=vesicle->sphHarmonics; |
| | | ts_int i,j; |
| | | for(i=0;i<sph->l;i++){ |
| | | for(j=0;j<2*i+1;j++){ |
| | | /* DEBUG fprintf(stderr,"sph->sumUlm2[%d][%d]=%e\n",i,j,sph->ulm[i][j]* sph->ulm[i][j]); */ |
| | | sph->sumUlm2[i][j]+=sph->ulm[i][j]* sph->ulm[i][j]; |
| | | } |
| | | } |
| | | sph->N++; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool saveAvgUlm2(ts_vesicle *vesicle){ |
| | | |
| | | FILE *fh; |
| | | |
| | | fh=fopen("sph2out.dat", "w"); |
| | | if(fh==NULL){ |
| | | err("Cannot open file %s for writing"); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | ts_spharm *sph=vesicle->sphHarmonics; |
| | | ts_int i,j; |
| | | fprintf(fh,"l,\tm,\tulm^2avg\n"); |
| | | for(i=0;i<sph->l;i++){ |
| | | for(j=0;j<2*i+1;j++){ |
| | | fprintf(fh,"%d,\t%d,\t%e\n", i, j-i, sph->sumUlm2[i][j]/(ts_double)sph->N); |
| | | |
| | | } |
| | | fprintf(fh,"\n"); |
| | | } |
| | | fclose(fh); |
| | | return TS_SUCCESS; |
| | | } |