Trisurf Monte Carlo simulator
Samo Penic
2012-07-12 352fad2165896fe4bedda7fdc355950c4cbcb37c
src/vertexmove.c
@@ -11,60 +11,66 @@
//#include "io.h"
#include<stdio.h>
#include "vertexmove.h"
#include <string.h>
ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double
*rn){
    ts_uint i;
    ts_double dist;
    ts_vertex *tvtx=(ts_vertex *)malloc(sizeof(ts_vertex));
   tvtx->data=init_vertex_data();
    ts_bool retval; 
    ts_uint cellidx; 
    ts_double xold,yold,zold;
    ts_double delta_energy,oenergy;
    ts_vertex *ovtx;
    //randomly we move the temporary vertex
    tvtx->data->x=vtx->data->x+vesicle->stepsize*(2.0*rn[0]-1.0);
    tvtx->data->y=vtx->data->y+vesicle->stepsize*(2.0*rn[1]-1.0);
    tvtx->data->z=vtx->data->z+vesicle->stepsize*(2.0*rn[2]-1.0);
    //check we if some length to neighbours are too much
    for(i=0;i<vtx->data->neigh_no;i++){
        dist=vtx_distance_sq(tvtx,vtx->data->neigh[i]);
        if(dist<1.0 || dist>vesicle->dmax) return TS_FAIL;
   //This will hold all the information of vtx and its neighbours
   ts_vertex **backupvtx=(ts_vertex **)calloc(vtx->neigh_no+1,sizeof(ts_vertex *));
   backupvtx[0]=(ts_vertex *)malloc(sizeof(ts_vertex));
   backupvtx[0]=(ts_vertex *)memcpy((void *)backupvtx[0],(void *)vtx,sizeof(ts_vertex));
       //temporarly moving the vertex
   vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0);
       vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0);
       vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0);
       //check we if some length to neighbours are too much
    for(i=0;i<vtx->neigh_no;i++){
        dist=vtx_distance_sq(vtx,vtx->neigh[i]);
        if(dist<1.0 || dist>vesicle->dmax) {
      vtx=memcpy((void *)vtx,(void *)backupvtx[0],sizeof(ts_vertex));
      free(backupvtx[0]);
      free(backupvtx);
//   fprintf(stderr,"Fail 1, dist=%f, vesicle->dmax=%f\n", dist, vesicle->dmax);
      return TS_FAIL;
      }
    }
fprintf(stderr,"Was here!\n");
    //self avoidance check with distant vertices
     cellidx=vertex_self_avoidance(vesicle, tvtx);
     cellidx=vertex_self_avoidance(vesicle, vtx);
    //check occupation number
     retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx,tvtx);
     retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,backupvtx[0],vtx);
    if(retval==TS_FAIL){
      vtx=memcpy((void *)vtx,(void *)backupvtx[0],sizeof(ts_vertex));
      free(backupvtx[0]);
      free(backupvtx);
//   fprintf(stderr,"Fail 2\n");
        return TS_FAIL;
    } 
    //if all the tests are successful, then we update the vertex position
    xold=vtx->data->x;
    yold=vtx->data->y;
    zold=vtx->data->z;
    ovtx=malloc(sizeof(ts_vertex));
    vtx_copy(ovtx,vtx);
    vtx->data->x=tvtx->data->x;
    vtx->data->y=tvtx->data->y;
    vtx->data->z=tvtx->data->z;
    //if all the tests are successful, then energy for vtx and neighbours is calculated
   for(i=0;i<vtx->neigh_no;i++){
   backupvtx[i+1]=(ts_vertex *)malloc(sizeof(ts_vertex));
   backupvtx[i+1]=memcpy((void *)backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex));
   }
    delta_energy=0;
    //update the normals of triangles that share bead i.
    for(i=0;i<vtx->data->tristar_no;i++) triangle_normal_vector(vtx->data->tristar[i]);
    for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
    //energy and curvature
    energy_vertex(vtx);
    delta_energy=vtx->data->xk*(vtx->data->energy - ovtx->data->energy);
    delta_energy=vtx->xk*(vtx->energy - backupvtx[0]->energy);
    //the same is done for neighbouring vertices
    for(i=0;i<vtx->data->neigh_no;i++){
        oenergy=vtx->data->neigh[i]->data->energy;
        energy_vertex(vtx->data->neigh[i]);
        delta_energy+=vtx->data->neigh[i]->data->xk*(vtx->data->neigh[i]->data->energy-oenergy);
    for(i=0;i<vtx->neigh_no;i++){
        oenergy=vtx->neigh[i]->energy;
        energy_vertex(vtx->neigh[i]);
        delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy);
    }
    fprintf(stderr, "DE=%f\n",delta_energy);
//   fprintf(stderr, "DE=%f\n",delta_energy);
    //MONTE CARLOOOOOOOO
    if(delta_energy>=0){
#ifdef TS_DOUBLE_DOUBLE
@@ -78,28 +84,31 @@
#endif
    {
    //not accepted, reverting changes
    vtx->data->x=xold;
    vtx->data->y=yold;
    vtx->data->z=zold;
   vtx=memcpy((void *)vtx,(void *)backupvtx[0],sizeof(ts_vertex));
   free(backupvtx[0]);
   for(i=0;i<vtx->neigh_no;i++){
   vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)backupvtx[i+1],sizeof(ts_vertex));
   free(backupvtx[i+1]);
   }
   free(backupvtx);
//   fprintf(stderr,"Reverted\n");
    //update the normals of triangles that share bead i.
    for(i=0;i<vtx->data->tristar_no;i++) triangle_normal_vector(vtx->data->tristar[i]);
    //energy and curvature
    energy_vertex(vtx);
    //the same is done for neighbouring vertices
    for(i=0;i<vtx->data->neigh_no;i++) energy_vertex(vtx->data->neigh[i]);
  free(ovtx->data->bond_length);
    free(ovtx->data->bond_length_dual);
    free(ovtx);
    for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
    return TS_FAIL; 
    }
}
    //END MONTE CARLOOOOOOO
    //TODO: change cell occupation if necessary!
    free(ovtx->data->bond_length);
    free(ovtx->data->bond_length_dual);
    free(ovtx);
//   fprintf(stderr,"Success!!\n");
   free(backupvtx[0]);
   for(i=0;i<vtx->neigh_no;i++){
   free(backupvtx[i+1]);
   }
   free(backupvtx);
//   fprintf(stderr,"Accepted\n");
    return TS_SUCCESS;
}