| | |
| | | /* vim: set ts=4 sts=4 sw=4 noet : */ |
| | | #include<stdlib.h> |
| | | #include<math.h> |
| | | #include "general.h" |
| | | #include "vertex.h" |
| | | #include "bond.h" |
| | | #include "triangle.h" |
| | | #include "vesicle.h" |
| | | #include "energy.h" |
| | | #include "timestep.h" |
| | | #include "cell.h" |
| | | //#include "io.h" |
| | | #include<stdio.h> |
| | | #include<math.h> |
| | | //#include "io.h" |
| | | #include "general.h" |
| | | #include "timestep.h" |
| | | #include "vertexmove.h" |
| | | #include "bondflip.h" |
| | | #include "frame.h" |
| | | #include "io.h" |
| | | #include "stats.h" |
| | | #include "sh.h" |
| | | #include "shcomplex.h" |
| | | #include "vesicle.h" |
| | | #include<gsl/gsl_complex.h> |
| | | #include<gsl/gsl_complex_math.h> |
| | | #include<string.h> |
| | | #include <sys/stat.h> |
| | | |
| | | ts_bool single_timestep(ts_vesicle *vesicle){ |
| | | |
| | | ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){ |
| | | ts_uint i, j,k,l,m; |
| | | ts_double r0,kc1=0,kc2=0,kc3=0,kc4=0; |
| | | ts_double l1,l2,l3,vmsr,bfsr, vmsrt, bfsrt; |
| | | ts_ulong epochtime; |
| | | ts_double max_z,min_z; |
| | | FILE *fd1,*fd2=NULL,*fd3=NULL; |
| | | char filename[10000]; |
| | | //struct stat st; |
| | | strcpy(filename,command_line_args.path); |
| | | strcat(filename,"statistics.csv"); |
| | | //int result = stat(filename, &st); |
| | | FILE *fd; |
| | | if(start_iteration==0) |
| | | fd=fopen(filename,"w"); |
| | | else |
| | | fd=fopen(filename,"a"); |
| | | if(fd==NULL){ |
| | | fatal("Cannot open statistics.csv file for writing",1); |
| | | } |
| | | if(start_iteration==0) |
| | | fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n"); |
| | | |
| | | if(vesicle->sphHarmonics!=NULL){ |
| | | strcpy(filename,command_line_args.path); |
| | | strcat(filename,"ulm2.csv"); |
| | | // int result = stat(filename, &st); |
| | | if(start_iteration==0) |
| | | fd2=fopen(filename,"w"); |
| | | else |
| | | fd2=fopen(filename,"a"); |
| | | if(fd2==NULL){ |
| | | fatal("Cannot open ulm2.csv file for writing",1); |
| | | } |
| | | if(start_iteration==0) //file does not exist |
| | | fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n"); |
| | | } |
| | | |
| | | /* RANDOM SEED SET BY CURRENT TIME */ |
| | | epochtime=get_epoch(); |
| | | srand48(epochtime); |
| | | centermass(vesicle); |
| | | cell_occupation(vesicle); |
| | | vesicle_volume(vesicle); //needed for constant volume at this moment |
| | | vesicle_area(vesicle); //needed for constant area at this moment |
| | | if(V0<0.000001) |
| | | V0=vesicle->volume; |
| | | ts_fprintf(stdout,"Setting volume V0=%.17f\n",V0); |
| | | if(A0<0.000001) |
| | | A0=vesicle->area; |
| | | ts_fprintf(stdout,"Setting area A0=%.17f\n",A0); |
| | | epsvol=4.0*sqrt(2.0*M_PI)/pow(3.0,3.0/4.0)*V0/pow(vesicle->tlist->n,3.0/2.0); |
| | | epsarea=A0/(ts_double)vesicle->tlist->n; |
| | | |
| | | if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps); |
| | | for(i=start_iteration;i<inititer+iterations;i++){ |
| | | vmsr=0.0; |
| | | bfsr=0.0; |
| | | |
| | | //plane confinement |
| | | if(vesicle->tape->plane_confinement_switch){ |
| | | min_z=1e10; |
| | | max_z=-1e10; |
| | | for(k=0;k<vesicle->vlist->n;k++){ |
| | | if(vesicle->vlist->vtx[k]->z > max_z) max_z=vesicle->vlist->vtx[k]->z; |
| | | if(vesicle->vlist->vtx[k]->z < min_z) min_z=vesicle->vlist->vtx[k]->z; |
| | | } |
| | | vesicle->confinement_plane.force_switch=0; |
| | | if(max_z>=vesicle->tape->plane_d/2.0){ |
| | | ts_fprintf(stdout, "Max vertex out of bounds (z>=%e). Plane set to max_z = %e.\n",vesicle->tape->plane_d/2.0,max_z); |
| | | vesicle->confinement_plane.z_max = max_z; |
| | | vesicle->confinement_plane.force_switch=1; |
| | | } else { |
| | | vesicle->confinement_plane.z_max=vesicle->tape->plane_d/2.0; |
| | | } |
| | | if(min_z<=-vesicle->tape->plane_d/2.0){ |
| | | ts_fprintf(stdout, "Min vertex out of bounds (z<=%e). Plane set to min_z = %e.\n",-vesicle->tape->plane_d/2.0,min_z); |
| | | vesicle->confinement_plane.z_min = min_z; |
| | | vesicle->confinement_plane.force_switch=1; |
| | | } else { |
| | | vesicle->confinement_plane.z_min=-vesicle->tape->plane_d/2.0; |
| | | } |
| | | ts_fprintf(stdout,"Vesicle confinement by plane set to (zmin, zmax)=(%e,%e).\n",vesicle->confinement_plane.z_min,vesicle->confinement_plane.z_max); |
| | | if(vesicle->confinement_plane.force_switch) ts_fprintf(stdout,"Squeezing with force %e.\n",vesicle->tape->plane_F); |
| | | } |
| | | |
| | | //end plane confinement |
| | | |
| | | /* vesicle_volume(vesicle); |
| | | fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); */ |
| | | for(j=0;j<mcsweeps;j++){ |
| | | single_timestep(vesicle, &vmsrt, &bfsrt); |
| | | vmsr+=vmsrt; |
| | | bfsr+=bfsrt; |
| | | } |
| | | /* |
| | | vesicle_volume(vesicle); |
| | | fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); */ |
| | | vmsr/=(ts_double)mcsweeps; |
| | | bfsr/=(ts_double)mcsweeps; |
| | | centermass(vesicle); |
| | | cell_occupation(vesicle); |
| | | dump_state(vesicle,i); |
| | | if(i>=inititer){ |
| | | write_vertex_xml_file(vesicle,i-inititer,NULL); |
| | | write_master_xml_file(command_line_args.output_fullfilename); |
| | | epochtime=get_epoch(); |
| | | gyration_eigen(vesicle, &l1, &l2, &l3); |
| | | vesicle_volume(vesicle); //calculates just volume. |
| | | vesicle_area(vesicle); //calculates area. |
| | | r0=getR0(vesicle); |
| | | if(vesicle->sphHarmonics!=NULL){ |
| | | preparationSh(vesicle,r0); |
| | | //calculateYlmi(vesicle); |
| | | calculateUlmComplex(vesicle); |
| | | storeUlmComplex2(vesicle); |
| | | saveAvgUlm2(vesicle); |
| | | kc1=calculateKc(vesicle, 2,9); |
| | | kc2=calculateKc(vesicle, 6,9); |
| | | kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l); |
| | | kc4=calculateKc(vesicle, 3,6); |
| | | strcpy(filename,command_line_args.path); |
| | | strcat(filename,"state.dat"); |
| | | fd1=fopen(filename,"w"); |
| | | fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle)); |
| | | for(k=0;k<vesicle->vlist->n;k++){ |
| | | fprintf(fd1,"%e %e %e %e %e\n", |
| | | vesicle->vlist->vtx[k]->x, |
| | | vesicle->vlist->vtx[k]->y, |
| | | vesicle->vlist->vtx[k]->z, |
| | | vesicle->vlist->vtx[k]->solAngle, |
| | | vesicle->vlist->vtx[k]->relR |
| | | ); |
| | | } |
| | | fclose(fd1); |
| | | |
| | | fprintf(fd2,"%u ", i); |
| | | for(l=0;l<vesicle->sphHarmonics->l;l++){ |
| | | for(m=l;m<2*l+1;m++){ |
| | | fprintf(fd2,"%e ", gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m]) ); |
| | | } |
| | | } |
| | | fprintf(fd2,"\n"); |
| | | |
| | | fflush(fd2); |
| | | |
| | | } |
| | | |
| | | fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,vesicle->volume, vesicle->area,l1,l2,l3,kc1, kc2, kc3,kc4); |
| | | |
| | | fflush(fd); |
| | | // sprintf(filename,"timestep-%05d.pov",i-inititer); |
| | | // write_pov_file(vesicle,filename); |
| | | } //end if(inititer....) |
| | | fd3=fopen(".status","w"); //write status file when everything is written to disk. |
| | | if(fd3==NULL){ |
| | | fatal("Cannot open .status file for writing",1); |
| | | } |
| | | fprintf(fd3,"%d",i); |
| | | fclose(fd3); |
| | | ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps); |
| | | } |
| | | fclose(fd); |
| | | if(fd2!=NULL) fclose(fd2); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){ |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); |
| | | ts_bool retval; |
| | | ts_double rnvec[3]; |
| | | ts_uint i; |
| | | for(i=0;i<vesicle->vlist.n;i++){ |
| | | ts_uint i,j, b; |
| | | ts_uint vmsrcnt=0; |
| | | for(i=0;i<vesicle->vlist->n;i++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | retval=single_verticle_timestep(vesicle,&vesicle->vlist.vertex[i],rnvec); |
| | | retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec); |
| | | if(retval==TS_SUCCESS) vmsrcnt++; |
| | | } |
| | | |
| | | for(i=0;i<vesicle->blist.n;i++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | ts_int bfsrcnt=0; |
| | | for(i=0;i<3*vesicle->vlist->n;i++){ |
| | | b=rand() % vesicle->blist->n; |
| | | //find a bond and return a pointer to a bond... |
| | | //call single_bondflip_timestep... |
| | | retval=single_bondflip_timestep(vesicle,&vesicle->blist.bond[i],rnvec); |
| | | |
| | | } |
| | | retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec); |
| | | // b++; retval=TS_FAIL; |
| | | if(retval==TS_SUCCESS) bfsrcnt++; |
| | | } |
| | | |
| | | for(i=0;i<vesicle->poly_list->n;i++){ |
| | | for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec); |
| | | } |
| | | } |
| | | |
| | | |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec); |
| | | } |
| | | } |
| | | |
| | | |
| | | // printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0); |
| | | *vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n; |
| | | *bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0; |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double |
| | | *rn){ |
| | | ts_uint i; |
| | | ts_double dist; |
| | | ts_vertex tvtx; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | ts_double xold,yold,zold; |
| | | ts_double delta_energy,oenergy; |
| | | ts_vertex *ovtx; |
| | | |
| | | //randomly we move the temporary vertex |
| | | tvtx.x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); |
| | | tvtx.y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); |
| | | tvtx.z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); |
| | | //check we if some length to neighbours are too much |
| | | |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | dist=vertex_distance_sq(&tvtx,vtx->neigh[i]); |
| | | if(dist<1.0 || dist>vesicle->dmax) return TS_FAIL; |
| | | } |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, &tvtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(&vesicle->clist,cellidx,vtx,&tvtx); |
| | | if(retval==TS_FAIL){ |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | //if all the tests are successful, then we update the vertex position |
| | | xold=vtx->x; |
| | | yold=vtx->y; |
| | | zold=vtx->z; |
| | | ovtx=malloc(sizeof(ts_vertex)); |
| | | vertex_full_copy(ovtx,vtx); |
| | | vtx->x=tvtx.x; |
| | | vtx->y=tvtx.y; |
| | | vtx->z=tvtx.z; |
| | | |
| | | delta_energy=0; |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //energy and curvature |
| | | energy_vertex(vtx); |
| | | delta_energy=vtx->xk*(vtx->energy - ovtx->energy); |
| | | //the same is done for neighbouring vertices |
| | | for(i=0;i<vtx->neigh_no;i++){ |
| | | oenergy=vtx->neigh[i]->energy; |
| | | energy_vertex(vtx->neigh[i]); |
| | | delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); |
| | | } |
| | | // fprintf(stderr, "DE=%f\n",delta_energy); |
| | | //MONTE CARLOOOOOOOO |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(expl(-delta_energy)< (ts_ldouble)drand48()) |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx->x=xold; |
| | | vtx->y=yold; |
| | | vtx->z=zold; |
| | | //update the normals of triangles that share bead i. |
| | | for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); |
| | | //energy and curvature |
| | | energy_vertex(vtx); |
| | | //the same is done for neighbouring vertices |
| | | for(i=0;i<vtx->neigh_no;i++) energy_vertex(vtx->neigh[i]); |
| | | free(ovtx->bond_length); |
| | | free(ovtx->bond_length_dual); |
| | | free(ovtx); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | //END MONTE CARLOOOOOOO |
| | | |
| | | //TODO: change cell occupation if necessary! |
| | | |
| | | free(ovtx->bond_length); |
| | | free(ovtx->bond_length_dual); |
| | | free(ovtx); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool single_bondflip_timestep(ts_vesicle *vesicle, ts_bond *bond, ts_double *rn){ |
| | | /*c Vertex and triangle (lm and lp) indexing for bond flip: |
| | | c +----- k-------+ +----- k ------+ |
| | | c |lm1 / | \ lp1 | |lm1 / \ lp1 | |
| | | c | / | \ | | / \ | |
| | | c |/ | \ | FLIP |/ lm \ | |
| | | c km lm | lp kp ---> km ---------- kp |
| | | c |\ | / | |\ lp / | |
| | | c | \ | / | | \ / | |
| | | c |lm2 \ | / lp2 | |lm2 \ / lp2 | |
| | | c +------it------+ +----- it -----+ |
| | | c |
| | | */ |
| | | ts_vertex *it=bond->vtx1; |
| | | ts_vertex *k=bond->vtx2; |
| | | ts_uint nei,neip,neim; |
| | | ts_uint i,j; |
| | | ts_double oldenergy, delta_energy; |
| | | // ts_triangle *lm=NULL,*lp=NULL, *lp1=NULL, *lp2=NULL, *lm1=NULL, *lm2=NULL; |
| | | |
| | | ts_vertex *kp,*km; |
| | | |
| | | if(it->neigh_no< 3) return TS_FAIL; |
| | | if(k->neigh_no< 3) return TS_FAIL; |
| | | if(k==NULL || it==NULL){ |
| | | fatal("In bondflip, number of neighbours of k or it is less than 3!",999); |
| | | } |
| | | |
| | | |
| | | for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k |
| | | if(it->neigh[i]==k){ |
| | | nei=i; |
| | | break; |
| | | } |
| | | } |
| | | neip=nei+1; // I don't like it.. Smells like I must have it in correct order |
| | | neim=nei-1; |
| | | if(neip>=it->neigh_no) neip=0; |
| | | if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not |
| | | there the neim is never <0 !!! */ |
| | | // fprintf(stderr,"The numbers are: %u %u\n",neip, neim); |
| | | km=it->neigh[neim]; // We located km and kp |
| | | kp=it->neigh[neip]; |
| | | |
| | | if(km==NULL || kp==NULL){ |
| | | fatal("In bondflip, cannot determine km and kp!",999); |
| | | } |
| | | |
| | | // fprintf(stderr,"I WAS HERE! after the 4 vertices are known!\n"); |
| | | |
| | | /* test if the membrane is wrapped too much, so that kp is nearest neighbour of |
| | | * km. If it is true, then don't flip! */ |
| | | for(i=0;i<km->neigh_no;i++){ |
| | | if(km->neigh[i] == kp) return TS_FAIL; |
| | | } |
| | | // fprintf(stderr,"Membrane didn't wrap too much.. Continue.\n"); |
| | | /* if bond would be too long, return... */ |
| | | if(vertex_distance_sq(km,kp) > vesicle->dmax ) return TS_FAIL; |
| | | // fprintf(stderr,"Bond will not be too long.. Continue.\n"); |
| | | |
| | | /* we make a bond flip. this is different than in original fortran */ |
| | | // 0. step. Get memory prior the flip |
| | | oldenergy=0; |
| | | oldenergy+=k->xk* k->energy; |
| | | oldenergy+=kp->xk* kp->energy; |
| | | oldenergy+=km->xk* km->energy; |
| | | oldenergy+=it->xk* it->energy; |
| | | // for(i=0;i<k->neigh_no;i++) oldenergy+=k->neigh[i]->xk*k->neigh[i]->energy; |
| | | // for(i=0;i<kp->neigh_no;i++) oldenergy+=kp->neigh[i]->xk*kp->neigh[i]->energy; |
| | | // for(i=0;i<km->neigh_no;i++) oldenergy+=km->neigh[i]->xk*km->neigh[i]->energy; |
| | | // for(i=0;i<it->neigh_no;i++) oldenergy+=it->neigh[i]->xk*it->neigh[i]->energy; |
| | | /* |
| | | fprintf(stderr,"*** Naslov k=%d\n",k); |
| | | fprintf(stderr,"*** Naslov it=%d\n",it); |
| | | fprintf(stderr,"*** Naslov km=%d\n",km); |
| | | fprintf(stderr,"*** Naslov kp=%d\n",kp); |
| | | |
| | | for(i=0;i<k->neigh_no;i++) |
| | | fprintf(stderr,"k sosed=%d\n",k->neigh[i]); |
| | | for(i=0;i<it->neigh_no;i++) |
| | | fprintf(stderr,"it sosed=%d\n",it->neigh[i]); |
| | | |
| | | for(i=0;i<km->neigh_no;i++) |
| | | fprintf(stderr,"km sosed=%d\n",km->neigh[i]); |
| | | for(i=0;i<kp->neigh_no;i++) |
| | | fprintf(stderr,"kp sosed=%d\n",kp->neigh[i]); |
| | | |
| | | |
| | | */ |
| | | // fprintf(stderr,"I WAS HERE! Before bondflip!\n"); |
| | | ts_flip_bond(k,it,km,kp, bond); |
| | | // fprintf(stderr,"I WAS HERE! Bondflip successful!\n"); |
| | | |
| | | /* Calculating the new energy */ |
| | | delta_energy=0; |
| | | for(i=0;i<k->neigh_no;i++) energy_vertex(k->neigh[i]); |
| | | for(i=0;i<kp->neigh_no;i++) energy_vertex(kp->neigh[i]); |
| | | for(i=0;i<km->neigh_no;i++) energy_vertex(km->neigh[i]); |
| | | for(i=0;i<it->neigh_no;i++) energy_vertex(it->neigh[i]); |
| | | delta_energy+=k->xk* k->energy; |
| | | delta_energy+=kp->xk* kp->energy; |
| | | delta_energy+=km->xk* km->energy; |
| | | delta_energy+=it->xk* it->energy; |
| | | // for(i=0;i<k->neigh_no;i++) delta_energy+=k->neigh[i]->xk*k->neigh[i]->energy; |
| | | // for(i=0;i<kp->neigh_no;i++) delta_energy+=kp->neigh[i]->xk*kp->neigh[i]->energy; |
| | | // for(i=0;i<km->neigh_no;i++) delta_energy+=km->neigh[i]->xk*km->neigh[i]->energy; |
| | | // for(i=0;i<it->neigh_no;i++) delta_energy+=it->neigh[i]->xk*it->neigh[i]->energy; |
| | | delta_energy-=oldenergy; |
| | | // fprintf(stderr,"I WAS HERE! Got energy!\n"); |
| | | /* MONTE CARLO */ |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(expl(-delta_energy)< (ts_ldouble)drand48()) |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | // fprintf(stderr,"Failed to move, due to MC\n"); |
| | | |
| | | // ts_flip_bond(km,kp,it,k, bond); |
| | | ts_flip_bond(kp,km,k,it, bond); |
| | | |
| | | |
| | | /* |
| | | fprintf(stderr,"*** Naslov k=%d\n",k); |
| | | fprintf(stderr,"*** Naslov it=%d\n",it); |
| | | fprintf(stderr,"*** Naslov km=%d\n",km); |
| | | fprintf(stderr,"*** Naslov kp=%d\n",kp); |
| | | for(i=0;i<k->neigh_no;i++) |
| | | fprintf(stderr,"k sosed=%d\n",k->neigh[i]); |
| | | for(i=0;i<it->neigh_no;i++) |
| | | fprintf(stderr,"it sosed=%d\n",it->neigh[i]); |
| | | |
| | | |
| | | for(i=0;i<km->neigh_no;i++) |
| | | fprintf(stderr,"km sosed=%d\n",km->neigh[i]); |
| | | for(i=0;i<kp->neigh_no;i++) |
| | | fprintf(stderr,"kp sosed=%d\n",kp->neigh[i]); |
| | | */ |
| | | |
| | | |
| | | |
| | | // fprintf(stderr,"Reverted condition!\n"); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | // fprintf(stderr,"Success\n"); |
| | | |
| | | |
| | | /* IF BONDFLIP ACCEPTED, THEN RETURN SUCCESS! */ |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool ts_flip_bond(ts_vertex *k,ts_vertex *it,ts_vertex *km, ts_vertex *kp, |
| | | ts_bond *bond){ |
| | | |
| | | ts_triangle *lm=NULL,*lp=NULL, *lp1=NULL, *lm2=NULL; |
| | | ts_uint i,j, lmidx, lpidx; |
| | | if(k==NULL || it==NULL || km==NULL || kp==NULL){ |
| | | fatal("ts_flip_bond: You called me with invalid pointers to vertices",999); |
| | | } |
| | | // 1. step. We find lm and lp from k->tristar ! |
| | | for(i=0;i<it->tristar_no;i++){ |
| | | for(j=0;j<k->tristar_no;j++){ |
| | | if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik |
| | | if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1] |
| | | == km || it->tristar[i]->vertex[2]== km )){ |
| | | lm=it->tristar[i]; |
| | | // lmidx=i; |
| | | } |
| | | else |
| | | { |
| | | lp=it->tristar[i]; |
| | | // lpidx=i; |
| | | } |
| | | |
| | | } |
| | | } |
| | | } |
| | | if(lm==NULL || lp==NULL) fatal("ts_flip_bond: Cannot find triangles lm and lp!",999); |
| | | |
| | | //we look for important triangles lp1 and lm2. |
| | | |
| | | for(i=0;i<k->tristar_no;i++){ |
| | | for(j=0;j<kp->tristar_no;j++){ |
| | | if((k->tristar[i] == kp->tristar[j]) && k->tristar[i]!=lp){ //ce gre za skupen trikotnik |
| | | lp1=k->tristar[i]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | for(i=0;i<it->tristar_no;i++){ |
| | | for(j=0;j<km->tristar_no;j++){ |
| | | if((it->tristar[i] == km->tristar[j]) && it->tristar[i]!=lm){ //ce gre za skupen trikotnik |
| | | lm2=it->tristar[i]; |
| | | } |
| | | } |
| | | } |
| | | /* |
| | | // DEBUG TESTING! |
| | | fprintf(stderr,"*** Naslov k=%d\n",k); |
| | | fprintf(stderr,"*** Naslov it=%d\n",it); |
| | | fprintf(stderr,"*** Naslov km=%d\n",km); |
| | | fprintf(stderr,"*** Naslov kp=%d\n",kp); |
| | | |
| | | for(i=0;i<k->neigh_no;i++) |
| | | fprintf(stderr,"k sosed=%d\n",k->neigh[i]); |
| | | for(i=0;i<it->neigh_no;i++) |
| | | fprintf(stderr,"it sosed=%d\n",it->neigh[i]); |
| | | |
| | | |
| | | // END DEBUG TESTING! |
| | | */ |
| | | if(lm2==NULL || lp1==NULL) fatal("ts_flip_bond: Cannot find triangles lm2 and lp1!",999); |
| | | |
| | | |
| | | //fprintf(stderr,"1. step: lm, lm2, lp1 and lp found!\n"); |
| | | |
| | | /* |
| | | //DEBUG TESTING |
| | | fprintf(stderr,"--- Naslov lm=%d",lm); |
| | | |
| | | |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lm->vertex[0],lm->vertex[1], lm->vertex[2]); |
| | | fprintf(stderr,"--- Naslov lp=%d",lp); |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lp->vertex[0],lp->vertex[1], lp->vertex[2]); |
| | | fprintf(stderr,"--- Naslov lm2=%d",lm2); |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lm2->vertex[0],lm2->vertex[1], lm2->vertex[2]); |
| | | fprintf(stderr,"--- Naslov lp1=%d",lp1); |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lp1->vertex[0],lp1->vertex[1], lp1->vertex[2]); |
| | | |
| | | for(i=0;i<lm->neigh_no;i++) |
| | | fprintf(stderr,"lm sosed=%d\n",lm->neigh[i]); |
| | | for(i=0;i<lp->neigh_no;i++) |
| | | fprintf(stderr,"lp sosed=%d\n",lp->neigh[i]); |
| | | // END DEBUG TESTING |
| | | */ |
| | | /* |
| | | // DEBUG TESTING! |
| | | |
| | | for(i=0;i<3;i++){ |
| | | |
| | | if(lp1->neigh[i]==lp) fprintf(stderr,"Nasel sem par lp1->lp\n"); |
| | | if(lp->neigh[i]==lp1) fprintf(stderr,"Nasel sem par lp->lp1\n"); |
| | | if(lm2->neigh[i]==lm) fprintf(stderr,"Nasel sem par lm2->lm\n"); |
| | | if(lm->neigh[i]==lm2) fprintf(stderr,"Nasel sem par lm->lm2\n"); |
| | | } |
| | | // END DEBUG TESTING! |
| | | */ |
| | | |
| | | |
| | | // 2. step. We change the triangle vertices... (actual bond flip) |
| | | for(i=0;i<3;i++) if(lm->vertex[i]== it) lm->vertex[i]= kp; |
| | | for(i=0;i<3;i++) if(lp->vertex[i]== k) lp->vertex[i]= km; |
| | | //fprintf(stderr,"2. step: actual bondflip made\n"); |
| | | // 2a. step. If any changes in triangle calculations must be done, do it here! |
| | | // * normals are recalculated here |
| | | triangle_normal_vector(lp); |
| | | triangle_normal_vector(lm); |
| | | // 3. step. Correct neighbours in vertex_list |
| | | |
| | | |
| | | vertex_remove_neighbour(k,it); |
| | | vertex_remove_neighbour(it,k); |
| | | //Tukaj pa nastopi tezava... Kam dodati soseda? |
| | | vertex_insert_neighbour(km,kp,k); |
| | | vertex_insert_neighbour(kp,km,it); |
| | | // vertex_add_neighbour(km,kp); //pazi na vrstni red. |
| | | // vertex_add_neighbour(kp,km); |
| | | //fprintf(stderr,"3. step: vertex neighbours corrected\n"); |
| | | |
| | | // 3a. step. If any changes to ts_vertex, do it here! |
| | | // bond_length calculatons not required for it is done in energy.c |
| | | |
| | | // 4. step. Correct bond_list (don't know why I still have it!) |
| | | bond->vtx1=km; |
| | | bond->vtx2=kp; |
| | | //fprintf(stderr,"4. step: bondlist corrected\n"); |
| | | |
| | | |
| | | // 5. step. Correct neighbouring triangles |
| | | |
| | | triangle_remove_neighbour(lp,lp1); |
| | | // fprintf(stderr,".\n"); |
| | | triangle_remove_neighbour(lp1,lp); |
| | | // fprintf(stderr,".\n"); |
| | | triangle_remove_neighbour(lm,lm2); |
| | | // fprintf(stderr,".\n"); |
| | | triangle_remove_neighbour(lm2,lm); |
| | | |
| | | triangle_add_neighbour(lm,lp1); |
| | | triangle_add_neighbour(lp1,lm); |
| | | triangle_add_neighbour(lp,lm2); //Vrstni red?! |
| | | triangle_add_neighbour(lm2,lp); |
| | | |
| | | //fprintf(stderr,"5. step: triangle neigbours corrected\n"); |
| | | |
| | | |
| | | // 6. step. Correct tristar for vertices km, kp, k and it |
| | | vertex_add_tristar(km,lp); // Preveri vrstni red! |
| | | vertex_add_tristar(kp,lm); |
| | | vertex_remove_tristar(it,lm); |
| | | vertex_remove_tristar(k,lp); |
| | | //fprintf(stderr,"6. step: tristar corrected\n"); |
| | | |
| | | /* |
| | | //DEBUG TESTING |
| | | fprintf(stderr,"--- Naslov lm=%d",lm); |
| | | |
| | | |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lm->vertex[0],lm->vertex[1], lm->vertex[2]); |
| | | fprintf(stderr,"--- Naslov lp=%d",lp); |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lp->vertex[0],lp->vertex[1], lp->vertex[2]); |
| | | fprintf(stderr,"--- Naslov lm2=%d",lm2); |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lm2->vertex[0],lm2->vertex[1], lm2->vertex[2]); |
| | | fprintf(stderr,"--- Naslov lp1=%d",lp1); |
| | | fprintf(stderr," vtxs(%d, %d, %d)\n",lp1->vertex[0],lp1->vertex[1], lp1->vertex[2]); |
| | | |
| | | for(i=0;i<lm->neigh_no;i++) |
| | | fprintf(stderr,"lm sosed=%d\n",lm->neigh[i]); |
| | | for(i=0;i<lp->neigh_no;i++) |
| | | fprintf(stderr,"lp sosed=%d\n",lp->neigh[i]); |
| | | // END DEBUG TESTING |
| | | */ |
| | | energy_vertex(k); |
| | | energy_vertex(kp); |
| | | energy_vertex(km); |
| | | energy_vertex(it); |
| | | |
| | | |
| | | // END modifications to data structure! |
| | | |
| | | |
| | | return TS_SUCCESS; |
| | | } |