| | |
| | | /* vim: set ts=4 sts=4 sw=4 noet : */ |
| | | #include<general.h> |
| | | #include "vesicle.h" |
| | | #include "vertex.h" |
| | | #include "triangle.h" |
| | | #include "bond.h" |
| | | #include "cell.h" |
| | | #include "stdlib.h" |
| | | #include "poly.h" |
| | | #include "sh.h" |
| | | #include "shcomplex.h" |
| | | #include "plugins.h" |
| | | |
| | | ts_vesicle *init_vesicle(ts_uint N, ts_uint ncmax1, ts_uint ncmax2, ts_uint |
| | | ncmax3, ts_double stepsize){ |
| | | ts_vesicle *vesicle=(ts_vesicle *)calloc(1,sizeof(ts_vesicle)); |
| | | vesicle->vlist=init_vertex_list(N); |
| | | vesicle->blist=init_bond_list(); |
| | | vesicle->tlist=init_triangle_list(); |
| | | vesicle->clist=init_cell_list(ncmax1, ncmax2, ncmax3, stepsize); |
| | | return vesicle; |
| | | } |
| | | |
| | | ts_bool vesicle_translate(ts_vesicle *vesicle,ts_double x, ts_double y, ts_double z){ |
| | | ts_uint i; |
| | | ts_vertex *vtx=vesicle->vlist.vertex; |
| | | ts_uint nn=vesicle->vlist.n; |
| | | ts_vertex **vtx=vesicle->vlist->vtx; |
| | | ts_uint nn=vesicle->vlist->n; |
| | | for(i=0;i<nn;i++){ |
| | | vtx[i].x+=x; |
| | | vtx[i].y+=y; |
| | | vtx[i].z+=z; |
| | | vtx[i]->x+=x; |
| | | vtx[i]->y+=y; |
| | | vtx[i]->z+=z; |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool vesicle_free(ts_vesicle *vesicle){ |
| | | vertex_list_free(&vesicle->vlist); |
| | | bond_list_free(&vesicle->blist); |
| | | triangle_list_free(&vesicle->tlist); |
| | | cell_list_free(&vesicle->clist); |
| | | vtx_list_free(vesicle->vlist); |
| | | bond_list_free(vesicle->blist); |
| | | triangle_list_free(vesicle->tlist); |
| | | cell_list_free(vesicle->clist); |
| | | poly_list_free(vesicle->poly_list); |
| | | poly_list_free(vesicle->filament_list); |
| | | complex_sph_free(vesicle->sphHarmonics); |
| | | plugin_list_free(vesicle->plist); |
| | | free(vesicle); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /* @brief Function makes a sum of partial volumes of each triangle. Volumes of |
| | | * |
| | | * Partial volumes are calculated when we calculate normals of triangles. It is |
| | | * relatively easy to calculate the volume of vesicle if we take into account |
| | | * that the volume of the whole vertex is simply sum of all partial volumes of |
| | | * all the triangles. |
| | | */ |
| | | ts_bool vesicle_volume(ts_vesicle *vesicle){ |
| | | ts_double volume; |
| | | ts_uint i; |
| | | ts_triangle **tria=vesicle->tlist->tria; |
| | | volume=0; |
| | | for(i=0; i<vesicle->tlist->n;i++){ |
| | | volume=volume+tria[i]->volume; |
| | | } |
| | | vesicle->volume=volume; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /* @brief Function makes a sum of partial areas of each triangle. |
| | | * |
| | | * |
| | | * |
| | | */ |
| | | ts_bool vesicle_area(ts_vesicle *vesicle){ |
| | | ts_double area; |
| | | ts_uint i; |
| | | ts_triangle **tria=vesicle->tlist->tria; |
| | | area=0; |
| | | for(i=0;i<vesicle->tlist->n;i++){ |
| | | area=area+tria[i]->area; |
| | | } |
| | | vesicle->area=area; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_double vesicle_meancurvature(ts_vesicle *vesicle){ |
| | | // Integrates (H dA) over vesicle area A, where H=(C1+C2)/2. |
| | | // (To be devided by A outside of function) |
| | | ts_double mc; |
| | | ts_uint i; |
| | | mc=0; |
| | | for(i=0;i<vesicle->vlist->n;i++){ |
| | | mc=mc+vesicle->vlist->vtx[i]->curvature; |
| | | } |
| | | return mc/2.0; |
| | | } |