Trisurf Monte Carlo simulator
Samo Penic
2020-04-13 2a1e3d528265c3d366dab9ad4b0c4d3d65e1c4ed
src/timestep.c
@@ -16,50 +16,100 @@
#include<gsl/gsl_complex.h>
#include<gsl/gsl_complex_math.h>
#include<string.h>
#include <sys/stat.h>
ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){
   ts_uint i, j,k,l,m;
   ts_double r0,kc1=0,kc2=0,kc3=0,kc4=0;
   ts_uint i, j,k; //,l,m;
   ts_double kc1=0,kc2=0,kc3=0,kc4=0;
   ts_double l1,l2,l3,vmsr,bfsr, vmsrt, bfsrt;
   ts_ulong epochtime;
   FILE *fd1,*fd2=NULL;
   ts_double max_z,min_z;
   FILE *fd3=NULL;
    char filename[10000];
    strcpy(filename,command_line_args.path);
    strcat(filename,"statistics.csv");
   FILE *fd=fopen(filename,"w");
   //struct stat st;
   strcpy(filename,command_line_args.path);
   strcat(filename,"statistics.csv");
   //int result = stat(filename, &st);
   FILE *fd;
   if(start_iteration==0)
      fd=fopen(filename,"w");
   else
      fd=fopen(filename,"a");
   if(fd==NULL){
      fatal("Cannot open statistics.csv file for writing",1);
   }
   fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n");
   if(start_iteration==0)
      fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n");
    if(vesicle->sphHarmonics!=NULL){
/*    if(vesicle->sphHarmonics!=NULL){
        strcpy(filename,command_line_args.path);
        strcat(filename,"ulm2.csv"); 
//   int result = stat(filename, &st);
   if(start_iteration==0)
      fd2=fopen(filename,"w");
      if(fd2==NULL){
         fatal("Cannot open ulm2.csv file for writing",1);
      }
      fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n");
   else
      fd2=fopen(filename,"a");
   if(fd2==NULL){
      fatal("Cannot open ulm2.csv file for writing",1);
   }
   if(start_iteration==0) //file does not exist
      fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n");
   }
*/
/* RANDOM SEED SET BY CURRENT TIME */
   epochtime=get_epoch();         
   srand48(epochtime);
   centermass(vesicle);
   cell_occupation(vesicle);
   vesicle_volume(vesicle); //needed for constant volume at this moment
    vesicle_area(vesicle); //needed for constant area at this moment
   V0=vesicle->volume;
    A0=vesicle->area;
   vesicle_area(vesicle); //needed for constant area at this moment
   if(V0<0.000001)
      V0=vesicle->volume;
   ts_fprintf(stdout,"Setting volume V0=%.17f\n",V0);
   if(A0<0.000001)
      A0=vesicle->area;
   ts_fprintf(stdout,"Setting area A0=%.17f\n",A0);
   epsvol=4.0*sqrt(2.0*M_PI)/pow(3.0,3.0/4.0)*V0/pow(vesicle->tlist->n,3.0/2.0);
    epsarea=A0/(ts_double)vesicle->tlist->n;
  //  fprintf(stderr, "DVol=%1.16f (%1.16f), V0=%1.16f\n", epsvol,0.003e-2*V0,V0);
//   printf("epsvol=%e\n",epsvol);
   epsarea=A0/(ts_double)vesicle->tlist->n;
   if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps);
   for(i=start_iteration;i<inititer+iterations;i++){
      vmsr=0.0;
      bfsr=0.0;
   //plane confinement
   if(vesicle->tape->plane_confinement_switch){
      min_z=1e10;
      max_z=-1e10;
      for(k=0;k<vesicle->vlist->n;k++){
         if(vesicle->vlist->vtx[k]->z > max_z) max_z=vesicle->vlist->vtx[k]->z;
         if(vesicle->vlist->vtx[k]->z < min_z) min_z=vesicle->vlist->vtx[k]->z;
      }
      vesicle->confinement_plane.force_switch=0;
      if(max_z>=vesicle->tape->plane_d/2.0){
         ts_fprintf(stdout, "Max vertex out of bounds (z>=%e). Plane set to max_z = %e.\n",vesicle->tape->plane_d/2.0,max_z);
         vesicle->confinement_plane.z_max = max_z;
         vesicle->confinement_plane.force_switch=1;
      } else {
         vesicle->confinement_plane.z_max=vesicle->tape->plane_d/2.0;
      }
      if(min_z<=-vesicle->tape->plane_d/2.0){
         ts_fprintf(stdout, "Min vertex out of bounds (z<=%e). Plane set to min_z = %e.\n",-vesicle->tape->plane_d/2.0,min_z);
         vesicle->confinement_plane.z_min = min_z;
         vesicle->confinement_plane.force_switch=1;
      } else {
         vesicle->confinement_plane.z_min=-vesicle->tape->plane_d/2.0;
      }
      ts_fprintf(stdout,"Vesicle confinement by plane set to (zmin, zmax)=(%e,%e).\n",vesicle->confinement_plane.z_min,vesicle->confinement_plane.z_max);
      if(vesicle->confinement_plane.force_switch) ts_fprintf(stdout,"Squeezing with force %e.\n",vesicle->tape->plane_F);
   }
   //end plane confinement
/*    vesicle_volume(vesicle);
    fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); */
      for(j=0;j<mcsweeps;j++){
@@ -74,17 +124,23 @@
      bfsr/=(ts_double)mcsweeps;
      centermass(vesicle);
      cell_occupation(vesicle);
      ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps);
            dump_state(vesicle,i);
/* BINARY DUMPS ARE OBSOLETE. SHOULD WORK AS OF MAR 2020, BUT NO LONGER MAINTAINED */
//               dump_state(vesicle,i);
         vesicle_volume(vesicle); //calculates just volume.
                  vesicle_area(vesicle); //calculates area.
      if(vesicle->tape->constvolswitch==0){
         V0=vesicle->volume;
      }
      if(vesicle->tape->constareaswitch==0){
         A0=vesicle->area;
      }
      if(i>=inititer){
         write_vertex_xml_file(vesicle,i-inititer);
         write_vertex_xml_file(vesicle,i-inititer,NULL);
         write_master_xml_file(command_line_args.output_fullfilename);
         epochtime=get_epoch();         
         gyration_eigen(vesicle, &l1, &l2, &l3);
         vesicle_volume(vesicle); //calculates just volume.
            vesicle_area(vesicle); //calculates area.
         r0=getR0(vesicle);
            if(vesicle->sphHarmonics!=NULL){
         //r0=getR0(vesicle);
/*            if(vesicle->sphHarmonics!=NULL){
             preparationSh(vesicle,r0);
             //calculateYlmi(vesicle);
             calculateUlmComplex(vesicle);
@@ -94,6 +150,7 @@
                kc2=calculateKc(vesicle, 6,9);
                kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l);
                kc4=calculateKc(vesicle, 3,6);
                strcpy(filename,command_line_args.path);
                strcat(filename,"state.dat");  
            fd1=fopen(filename,"w");
@@ -119,17 +176,26 @@
   
             fflush(fd2);   
            }
*/
         fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,vesicle->volume, vesicle->area,l1,l2,l3,kc1, kc2, kc3,kc4);
          fflush(fd);   
      //   sprintf(filename,"timestep-%05d.pov",i-inititer);
      //   write_pov_file(vesicle,filename);
      } //end if(inititer....)
      fd3=fopen(".status","w"); //write status file when everything is written to disk.
      if(fd3==NULL){
         fatal("Cannot open .status file for writing",1);
      }
      fprintf(fd3,"%d",i);
      fclose(fd3);
      ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps);
   }
   fclose(fd);
   if(fd2!=NULL) fclose(fd2);
//   if(fd2!=NULL) fclose(fd2);
   return TS_SUCCESS;
}