| | |
| | | #include "general.h" |
| | | #include "energy.h" |
| | | #include "vertex.h" |
| | | #include "bond.h" |
| | | #include<math.h> |
| | | #include<stdio.h> |
| | | #include <gsl/gsl_vector_complex.h> |
| | | #include <gsl/gsl_matrix.h> |
| | | #include <gsl/gsl_eigen.h> |
| | | |
| | | |
| | | |
| | | int cmpfunc(const void *x, const void *y) |
| | | { |
| | | double diff= fabs(*(double*)x) - fabs(*(double*)y); |
| | | if(diff<0) return 1; |
| | | else return -1; |
| | | } |
| | | |
| | | |
| | | |
| | | /** @brief Wrapper that calculates energy of every vertex in vesicle |
| | |
| | | return TS_SUCCESS; |
| | | }; |
| | | |
| | | /** @brief Calculation of energy of the vertex |
| | | /** @brief Calculation of the bending energy of the vertex. |
| | | * |
| | | * Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. |
| | | * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, |
| | | * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. |
| | | * |
| | | * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. |
| | | * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. |
| | | * |
| | | \begin{tikzpicture}{ |
| | |
| | | * @returns TS_SUCCESS on successful calculation. |
| | | */ |
| | | inline ts_bool energy_vertex(ts_vertex *vtx){ |
| | | ts_uint jj; |
| | | ts_uint jjp,jjm; |
| | | ts_vertex *j,*jp, *jm; |
| | | ts_triangle *jt; |
| | | ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0; |
| | | ts_double x1,x2,x3,ctp,ctm,tot,xlen; |
| | | ts_double h,ht; |
| | | for(jj=1; jj<=vtx->neigh_no;jj++){ |
| | | jjp=jj+1; |
| | | if(jjp>vtx->neigh_no) jjp=1; |
| | | jjm=jj-1; |
| | | if(jjm<1) jjm=vtx->neigh_no; |
| | | j=vtx->neigh[jj-1]; |
| | | jp=vtx->neigh[jjp-1]; |
| | | jm=vtx->neigh[jjm-1]; |
| | | jt=vtx->tristar[jj-1]; |
| | | x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! |
| | | x2=vtx_distance_sq(j,jp); // shouldn't be zero! |
| | | x3=(j->x-jp->x)*(vtx->x-jp->x)+ |
| | | (j->y-jp->y)*(vtx->y-jp->y)+ |
| | | (j->z-jp->z)*(vtx->z-jp->z); |
| | | |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | ctp=x3/sqrt(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | ctp=x3/sqrtf(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | ctp=x3/sqrtl(x1*x2-x3*x3); |
| | | #endif |
| | | x1=vtx_distance_sq(vtx,jm); |
| | | x2=vtx_distance_sq(j,jm); |
| | | x3=(j->x-jm->x)*(vtx->x-jm->x)+ |
| | | (j->y-jm->y)*(vtx->y-jm->y)+ |
| | | (j->z-jm->z)*(vtx->z-jm->z); |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | ctm=x3/sqrt(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | ctm=x3/sqrtf(x1*x2-x3*x3); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | ctm=x3/sqrtl(x1*x2-x3*x3); |
| | | #endif |
| | | tot=ctp+ctm; |
| | | tot=0.5*tot; |
| | | ts_uint jj, i, j; |
| | | ts_double edge_vector_x[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_vector_y[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_vector_z[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_normal_x[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_normal_y[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_normal_z[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_binormal_x[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_binormal_y[7]={0,0,0,0,0,0,0}; |
| | | ts_double edge_binormal_z[7]={0,0,0,0,0,0,0}; |
| | | ts_double vertex_normal_x=0.0; |
| | | ts_double vertex_normal_y=0.0; |
| | | ts_double vertex_normal_z=0.0; |
| | | // ts_triangle *triedge[2]={NULL,NULL}; |
| | | |
| | | xlen=vtx_distance_sq(j,vtx); |
| | | /* |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | vtx->bond[jj-1]->bond_length=sqrt(xlen); |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | vtx->bond[jj-1]->bond_length=sqrtf(xlen); |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | vtx->bond[jj-1]->bond_length=sqrtl(xlen); |
| | | #endif |
| | | ts_uint nei,neip,neim; |
| | | ts_vertex *it, *k, *kp,*km; |
| | | ts_triangle *lm=NULL, *lp=NULL; |
| | | ts_double sumnorm; |
| | | ts_double temp_length; |
| | | |
| | | vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length; |
| | | */ |
| | | s+=tot*xlen; |
| | | xh+=tot*(j->x - vtx->x); |
| | | yh+=tot*(j->y - vtx->y); |
| | | zh+=tot*(j->z - vtx->z); |
| | | txn+=jt->xnorm; |
| | | tyn+=jt->ynorm; |
| | | tzn+=jt->znorm; |
| | | } |
| | | |
| | | h=xh*xh+yh*yh+zh*zh; |
| | | ht=txn*xh+tyn*yh + tzn*zh; |
| | | s=s/4.0; |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(ht>=0.0) { |
| | | vtx->curvature=sqrt(h); |
| | | } else { |
| | | vtx->curvature=-sqrt(h); |
| | | } |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(ht>=0.0) { |
| | | vtx->curvature=sqrtf(h); |
| | | } else { |
| | | vtx->curvature=-sqrtf(h); |
| | | } |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(ht>=0.0) { |
| | | vtx->curvature=sqrtl(h); |
| | | } else { |
| | | vtx->curvature=-sqrtl(h); |
| | | } |
| | | #endif |
| | | // c is forced curvature energy for each vertex. Should be set to zero for |
| | | // normal circumstances. |
| | | vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c); |
| | | |
| | | return TS_SUCCESS; |
| | | ts_double Se11, Se21, Se22, Se31, Se32, Se33; |
| | | ts_double Pv11, Pv21, Pv22, Pv31, Pv32, Pv33; |
| | | ts_double We; |
| | | ts_double Av, We_Av; |
| | | |
| | | ts_double eigenval[3]; |
| | | |
| | | gsl_matrix *gsl_Sv=gsl_matrix_alloc(3,3); |
| | | gsl_vector *Sv_eigen=gsl_vector_alloc(3); |
| | | gsl_eigen_symm_workspace *workspace=gsl_eigen_symm_alloc(3); |
| | | |
| | | ts_double mprod[7], phi[7], he[7]; |
| | | ts_double Sv[3][3]={{0,0,0},{0,0,0},{0,0,0}}; |
| | | // Here edge vector is calculated |
| | | // fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no); |
| | | |
| | | |
| | | |
| | | |
| | | Av=0; |
| | | for(i=0; i<vtx->tristar_no; i++){ |
| | | vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area; |
| | | vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area; |
| | | vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area; |
| | | Av+=vtx->tristar[i]->area/3; |
| | | } |
| | | temp_length=sqrt(pow(vertex_normal_x,2)+pow(vertex_normal_y,2)+pow(vertex_normal_z,2)); |
| | | vertex_normal_x=vertex_normal_x/temp_length; |
| | | vertex_normal_y=vertex_normal_y/temp_length; |
| | | vertex_normal_z=vertex_normal_z/temp_length; |
| | | |
| | | Pv11=1-vertex_normal_x*vertex_normal_x; |
| | | Pv22=1-vertex_normal_y*vertex_normal_y; |
| | | Pv33=1-vertex_normal_z*vertex_normal_z; |
| | | Pv21=vertex_normal_x*vertex_normal_y; |
| | | Pv31=vertex_normal_x*vertex_normal_z; |
| | | Pv32=vertex_normal_y*vertex_normal_z; |
| | | |
| | | |
| | | |
| | | |
| | | for(jj=0;jj<vtx->neigh_no;jj++){ |
| | | edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; |
| | | edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; |
| | | edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; |
| | | |
| | | //Here we calculate normalized edge vector |
| | | |
| | | temp_length=sqrt(edge_vector_x[jj]*edge_vector_x[jj]+edge_vector_y[jj]*edge_vector_y[jj]+edge_vector_z[jj]*edge_vector_z[jj]); |
| | | edge_vector_x[jj]=edge_vector_x[jj]/temp_length; |
| | | edge_vector_y[jj]=edge_vector_y[jj]/temp_length; |
| | | edge_vector_z[jj]=edge_vector_z[jj]/temp_length; |
| | | |
| | | //end normalization |
| | | // printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z); |
| | | |
| | | |
| | | it=vtx; |
| | | k=vtx->neigh[jj]; |
| | | nei=0; |
| | | for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k |
| | | if(it->neigh[i]==k){ |
| | | nei=i; |
| | | break; |
| | | } |
| | | } |
| | | neip=nei+1; // I don't like it.. Smells like I must have it in correct order |
| | | neim=nei-1; |
| | | if(neip>=it->neigh_no) neip=0; |
| | | if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not |
| | | there the neim is never <0 !!! */ |
| | | // fprintf(stderr,"The numbers are: %u %u\n",neip, neim); |
| | | km=it->neigh[neim]; // We located km and kp |
| | | kp=it->neigh[neip]; |
| | | |
| | | if(km==NULL || kp==NULL){ |
| | | fatal("energy_vertex: cannot determine km and kp!",233); |
| | | } |
| | | |
| | | for(i=0;i<it->tristar_no;i++){ |
| | | for(j=0;j<k->tristar_no;j++){ |
| | | if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik |
| | | if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1] |
| | | == km || it->tristar[i]->vertex[2]== km )){ |
| | | lm=it->tristar[i]; |
| | | // lmidx=i; |
| | | } |
| | | else |
| | | { |
| | | lp=it->tristar[i]; |
| | | // lpidx=i; |
| | | } |
| | | |
| | | } |
| | | } |
| | | } |
| | | if(lm==NULL || lp==NULL) fatal("energy_vertex: Cannot find triangles lm and lp!",233); |
| | | |
| | | //Triangle normals are NORMALIZED! |
| | | |
| | | sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2)); |
| | | |
| | | edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm; |
| | | edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm; |
| | | edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm; |
| | | |
| | | |
| | | edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]); |
| | | edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]); |
| | | edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]); |
| | | |
| | | |
| | | mprod[jj]=it->x*(k->y*edge_vector_z[jj]-edge_vector_y[jj]*k->z)-it->y*(k->x*edge_vector_z[jj]-k->z*edge_vector_x[jj])+it->z*(k->x*edge_vector_y[jj]-k->y*edge_vector_x[jj]); |
| | | phi[jj]=copysign(acos(lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm-1e-15),mprod[jj])+M_PI; |
| | | // printf("ACOS arg=%e\n", lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm); |
| | | //he was multiplied with 2 before... |
| | | he[jj]=sqrt( pow((edge_vector_x[jj]),2) + pow((edge_vector_y[jj]), 2) + pow((edge_vector_z[jj]), 2))*cos(phi[jj]/2.0); |
| | | // printf("phi[%d]=%f\n", jj,phi[jj]); |
| | | |
| | | Se11=edge_binormal_x[jj]*edge_binormal_x[jj]*he[jj]; |
| | | Se21=edge_binormal_x[jj]*edge_binormal_y[jj]*he[jj]; |
| | | Se22=edge_binormal_y[jj]*edge_binormal_y[jj]*he[jj]; |
| | | Se31=edge_binormal_x[jj]*edge_binormal_z[jj]*he[jj]; |
| | | Se32=edge_binormal_y[jj]*edge_binormal_z[jj]*he[jj]; |
| | | Se33=edge_binormal_z[jj]*edge_binormal_z[jj]*he[jj]; |
| | | |
| | | We=vertex_normal_x*edge_normal_x[jj]+vertex_normal_y*edge_normal_y[jj]+vertex_normal_z*edge_normal_z[jj]; |
| | | We_Av=We/Av; |
| | | |
| | | Sv[0][0]+=We_Av* ( Pv11*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv21*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv31*(Pv11*Se31+Pv21*Se32+Pv31*Se33) ); |
| | | Sv[0][1]+=We_Av* (Pv21*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv22*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv32*(Pv11*Se31+Pv21*Se32+Pv31*Se33)); |
| | | Sv[0][2]+=We_Av* (Pv31*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv32*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv33*(Pv11*Se31+Pv21*Se32+Pv31*Se33)); |
| | | |
| | | Sv[1][0]+=We_Av* (Pv11*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv21*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv31*(Pv21*Se31+Pv22*Se32+Pv32*Se33)); |
| | | Sv[1][1]+=We_Av* (Pv21*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv22*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv32*(Pv21*Se31+Pv22*Se32+Pv32*Se33)); |
| | | Sv[1][2]+=We_Av* (Pv31*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv32*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv33*(Pv21*Se31+Pv22*Se32+Pv32*Se33)); |
| | | |
| | | Sv[2][0]+=We_Av* (Pv11*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv21*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv31*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); |
| | | Sv[2][1]+=We_Av* (Pv21*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv22*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv32*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); |
| | | Sv[2][2]+=We_Av* (Pv31*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv32*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv33*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); |
| | | // printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]); |
| | | |
| | | } // END FOR JJ |
| | | |
| | | gsl_matrix_set(gsl_Sv, 0,0, Sv[0][0]); |
| | | gsl_matrix_set(gsl_Sv, 0,1, Sv[0][1]); |
| | | gsl_matrix_set(gsl_Sv, 0,2, Sv[0][2]); |
| | | gsl_matrix_set(gsl_Sv, 1,0, Sv[1][0]); |
| | | gsl_matrix_set(gsl_Sv, 1,1, Sv[1][1]); |
| | | gsl_matrix_set(gsl_Sv, 1,2, Sv[1][2]); |
| | | gsl_matrix_set(gsl_Sv, 2,0, Sv[2][0]); |
| | | gsl_matrix_set(gsl_Sv, 2,1, Sv[2][1]); |
| | | gsl_matrix_set(gsl_Sv, 2,2, Sv[2][2]); |
| | | |
| | | // printf("Se= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Se11, Se21, Se31, Se21, Se22, Se32, Se31, Se32, Se33); |
| | | // printf("Pv= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Pv11, Pv21, Pv31, Pv21, Pv22, Pv32, Pv31, Pv32, Pv33); |
| | | // printf("Sv= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Sv[0][0], Sv[0][1], Sv[0][2], Sv[1][0], Sv[1][1], Sv[1][2], Sv[2][0], Sv[2][1], Sv[2][2]); |
| | | |
| | | |
| | | gsl_eigen_symm(gsl_Sv, Sv_eigen, workspace); |
| | | |
| | | // printf("Eigenvalues: %f, %f, %f\n", gsl_vector_get(Sv_eigen, 0),gsl_vector_get(Sv_eigen, 1), gsl_vector_get(Sv_eigen, 2) ); |
| | | // printf("Eigenvalues: %f, %f, %f\n", gsl_matrix_get(evec, 0,0),gsl_matrix_get(evec, 0,1), gsl_matrix_get(evec, 0,2) ); |
| | | |
| | | |
| | | eigenval[0]= gsl_vector_get(Sv_eigen, 0); |
| | | eigenval[1]= gsl_vector_get(Sv_eigen, 1); |
| | | eigenval[2]= gsl_vector_get(Sv_eigen, 2); |
| | | |
| | | qsort(eigenval, 3, sizeof(ts_double), cmpfunc); |
| | | // printf("Eigenvalues: %f, %f, %f\n", eigenval[0], eigenval[1], eigenval[2] ); |
| | | |
| | | |
| | | vtx->energy=(pow(eigenval[0]+eigenval[1],2))*Av; |
| | | |
| | | gsl_matrix_free(gsl_Sv); |
| | | gsl_vector_free(Sv_eigen); |
| | | // gsl_matrix_free(evec); |
| | | gsl_eigen_symm_free(workspace); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ |
| | | int i; |
| | |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){ |
| | | if(fabs(vtx->c)<1e-15) return 0.0; |
| | | // printf("was here"); |
| | | if(fabs(vesicle->tape->F)<1e-15) return 0.0; |
| | | |
| | | ts_double norml,ddp=0.0; |
| | | ts_uint i; |
| | | ts_double xnorm=0.0,ynorm=0.0,znorm=0.0; |
| | | /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */ |
| | | for(i=0;i<vtx->tristar_no;i++){ |
| | | xnorm+=vtx->tristar[i]->xnorm; |
| | | ynorm+=vtx->tristar[i]->ynorm; |
| | | znorm+=vtx->tristar[i]->znorm; |
| | | } |
| | | /*normalize*/ |
| | | norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); |
| | | xnorm/=norml; |
| | | ynorm/=norml; |
| | | znorm/=norml; |
| | | /*calculate ddp, perpendicular displacement*/ |
| | | ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z); |
| | | /*calculate dE*/ |
| | | // printf("ddp=%e",ddp); |
| | | return vesicle->tape->F*ddp; |
| | | |
| | | } |
| | | |
| | | void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){ |
| | | triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2); |
| | | } |