Trisurf Monte Carlo simulator
Samo Penic
2016-07-05 0334070e91966e5bb11b34b462491353a188e128
src/shcomplex.c
@@ -1,3 +1,4 @@
/* vim: set ts=4 sts=4 sw=4 noet : */
#include<math.h>
#include<stdlib.h>
#include<gsl/gsl_complex.h>
@@ -68,7 +69,7 @@
    if(sph->co != NULL) free(sph->co);
    if(sph->ulm !=NULL) free(sph->ulm);
    if(sph->ulmComplex !=NULL) free(sph->ulmComplex);
    if(sph->sumUlm2 !=NULL) free(sph->sumUlm2);
        if(sph->Ylmi!=NULL) {
            for(i=0;i<sph->l;i++){
                if(sph->Ylmi[i]!=NULL){
@@ -130,31 +131,43 @@
}
ts_bool calculateKc(ts_vesicle *vesicle){
    ts_int i;
    gsl_matrix *A=gsl_matrix_alloc(vesicle->sphHarmonics->l,2);
ts_double calculateKc(ts_vesicle *vesicle, ts_int lmin, ts_int lmax){
    ts_int min=lmin;
    ts_int max=lmax; //vesicle->sphHarmonics->l-3;
    ts_long i,j;
    ts_double retval, bval;
    gsl_matrix *A=gsl_matrix_alloc(max-min,2);
    gsl_vector *tau=gsl_vector_alloc(2);
    gsl_vector *b=gsl_vector_alloc(vesicle->sphHarmonics->l);
    gsl_vector *b=gsl_vector_alloc(max-min);
    gsl_vector *x=gsl_vector_alloc(2);
    gsl_vector *res=gsl_vector_alloc(vesicle->sphHarmonics->l);
    gsl_vector *res=gsl_vector_alloc(max-min);
    //solving (A^T*A)*x=A^T*UlmSqAvg
    //solving (A^T*A)*x=A^T*b
    //fill the data for matrix A and vector b
    for(i=1;i<=vesicle->sphHarmonics->l;i++){
            gsl_matrix_set(A, i-1,0,(ts_double)((i-1)*(i+2)));
            gsl_matrix_set(A, i-1,1,(ts_double)((i-1)*(i+2)*(i+1)*i));
            gsl_vector_set(b,i-1,(ts_double)vesicle->sphHarmonics->N/vesicle->sphHarmonics->sumUlm2[i-1][(i-1)*2]);
    for(i=min;i<max;i++){
            gsl_matrix_set(A, i-min,0,(ts_double)((i-1)*(i+2)));
            gsl_matrix_set(A, i-min,1,(ts_double)((i-1)*(i+2)*(i+1)*i));
//            fprintf(stderr,"%e %e\n", gsl_matrix_get(A,i-min,0), gsl_matrix_get(A,i-min,1));
            bval=0.0;
            //average for m from 0..l (only positive m's)
            for(j=0;j<=i;j++){
                bval+=vesicle->sphHarmonics->sumUlm2[i][(j+i)];
            }
                bval=bval/(ts_double)vesicle->sphHarmonics->N/(ts_double)(i+1);
            gsl_vector_set(b,i-min,1.0/bval);
//            fprintf(stderr,"%e\n", 1.0/gsl_vector_get(b,i-min));
    }
    fprintf(stderr,"b[2]=%e\n",gsl_vector_get(b,1));
//    fprintf(stderr,"b[2]=%e\n",gsl_vector_get(b,1));
    gsl_linalg_QR_decomp(A,tau);
    gsl_linalg_QR_lssolve(A,tau,b,x,res);
    fprintf(stderr,"kc=%e\n",gsl_vector_get(x,1));
//    fprintf(stderr,"kc=%e\n",gsl_vector_get(x,1));
    retval=gsl_vector_get(x,1);
    gsl_matrix_free(A);
    gsl_vector_free(tau);
    gsl_vector_free(b);
    gsl_vector_free(x);
    gsl_vector_free(res);
    return TS_SUCCESS;
    return retval;
}