| | |
| | | from pyzbar.pyzbar import decode |
| | | from sid_process import enhanceSID |
| | | from sid_process import getSID |
| | | import cv2 |
| | | import numpy as np |
| | | import math |
| | | |
| | | |
| | | class Paper: |
| | | def __init__(self, filename=None): |
| | | def __init__(self, filename=None, sid_classifier=None, settings=None): |
| | | self.filename = filename |
| | | self.invalid = None |
| | | self.QRData = None |
| | | self.settings = {"answer_threshold": 0.25} if settings is None else settings |
| | | self.errors = [] |
| | | self.warnings = [] |
| | | self.sid = None |
| | | self.sid_classifier = sid_classifier |
| | | if filename is not None: |
| | | self.loadImage(filename) |
| | | self.runOcr() |
| | |
| | | self.data = None |
| | | self.invalid = True |
| | | return |
| | | if(len(d)>1): #if there are multiple codes, get first ean or qr code available. |
| | | for dd in d: |
| | | if(dd.type=="EAN13" or dd.type=="QR"): |
| | | d[0]=dd |
| | | break |
| | | self.QRDecode = d |
| | | self.QRData = d[0].data |
| | | xpos = d[0].rect.left |
| | | ypos = d[0].rect.top |
| | | # check if image is rotated wrongly |
| | | if xpos > self.imgHeight / 2.0 and ypost > self.imgWidth / 2.0: |
| | | if xpos > self.imgHeight / 2.0 and ypos > self.imgWidth / 2.0: |
| | | self.rotateAngle(180) |
| | | |
| | | def rotateAngle(self, angle=0): |
| | | # rot_mat = cv2.getRotationMatrix2D( |
| | | # (self.imgHeight / 2, self.imgWidth / 2), angle, 1.0 |
| | | # ) |
| | | rot_mat = cv2.getRotationMatrix2D( |
| | | (self.imgHeight / 2, self.imgWidth / 2), angle, 1.0 |
| | | (self.imgWidth / 2, self.imgHeight / 2), angle, 1.0 |
| | | ) |
| | | result = cv2.warpAffine( |
| | | self.img, |
| | | rot_mat, |
| | | (self.imgHeight, self.imgWidth), |
| | | (self.imgWidth, self.imgHeight), |
| | | flags=cv2.INTER_CUBIC, |
| | | borderMode=cv2.BORDER_CONSTANT, |
| | | borderValue=(255, 255, 255), |
| | |
| | | loc_filtered_x, loc_filtered_y = zip( |
| | | *sorted(zip(loc_filtered_x, loc_filtered_y)) |
| | | ) |
| | | # loc=[loc_filtered_y,loc_filtered_x] |
| | | # remove duplicates |
| | | # loc=[loc_filtered_y,loc_filtered_x] |
| | | # remove duplicates |
| | | a = np.diff(loc_filtered_x) > 40 |
| | | a = np.append(a, True) |
| | | loc_filtered_x = np.array(loc_filtered_x) |
| | |
| | | self.answerMatrix.append(oneline) |
| | | |
| | | def get_enhanced_sid(self): |
| | | es= enhanceSID(self.img[int(0.04*self.imgHeight):int(0.08*self.imgHeight), int(0.7*self.imgWidth):int(0.99*self.imgWidth)]) |
| | | cv2.imwrite("enhancedSID.png",es) |
| | | if self.sid_classifier is None: |
| | | return "x" |
| | | if self.settings is not None: |
| | | sid_mask = self.settings.get("sid_mask", None) |
| | | es, err, warn = getSID( |
| | | self.img[ |
| | | int(0.04 * self.imgHeight) : int(0.095 * self.imgHeight), |
| | | int(0.7 * self.imgWidth) : int(0.99 * self.imgWidth), |
| | | ], |
| | | self.sid_classifier, |
| | | sid_mask, |
| | | ) |
| | | [self.errors.append(e) for e in err] |
| | | [self.warnings.append(w) for w in warn] |
| | | return es |
| | | |
| | | def get_code_data(self): |
| | | if self.QRData is None: |
| | | self.errors.append("Could not read QR or EAN code! Not an exam?") |
| | | retval = { |
| | | "exam_id": None, |
| | | "page_no": None, |
| | | "paper_id": None, |
| | | "faculty_id": None, |
| | | "sid": None, |
| | | } |
| | | return retval |
| | | qrdata = bytes.decode(self.QRData, "utf8") |
| | | if self.QRDecode[0].type == "EAN13": |
| | | return { |
| | | "exam_id": int(qrdata[0:7]), |
| | | "page_no": int(qrdata[7]), |
| | | "paper_id": int(qrdata[-5:-1]), |
| | | "faculty_id": None, |
| | | "sid": None, |
| | | } |
| | | else: |
| | | data = qrdata.split(",") |
| | | retval = { |
| | | "exam_id": int(data[1]), |
| | | "page_no": int(data[3]), |
| | | "paper_id": int(data[2]), |
| | | "faculty_id": int(data[0]), |
| | | } |
| | | if len(data) > 4: |
| | | retval["sid"] = data[4] |
| | | |
| | | return retval |
| | | |
| | | def get_paper_ocr_data(self): |
| | | data = self.get_code_data() |
| | | data["qr"] = self.QRData |
| | | data["errors"] = self.errors |
| | | data["warnings"] = self.warnings |
| | | data["up_position"] = ( |
| | | list(self.xMarkerLocations[1] / self.imgWidth), |
| | | list(self.yMarkerLocations[1] / self.imgHeight), |
| | | ) |
| | | data["right_position"] = ( |
| | | list(self.xMarkerLocations[1] / self.imgWidth), |
| | | list(self.yMarkerLocations[1] / self.imgHeight), |
| | | ) |
| | | data["ans_matrix"] = ( |
| | | (np.array(self.answerMatrix) > self.settings["answer_threshold"]) * 1 |
| | | ).tolist() |
| | | if data["sid"] is None and data["page_no"] == 0: |
| | | data["sid"] = self.get_enhanced_sid() |
| | | return data |