| | |
| | | from pyzbar.pyzbar import decode |
| | | from sid_process import getSID |
| | | import cv2 |
| | | import numpy as np |
| | | import math |
| | | |
| | | |
| | | class Paper: |
| | | def __init__(self, filename=None, sid_classifier=None, settings=None): |
| | | self.filename = filename |
| | | self.invalid = None |
| | | self.QRData = None |
| | | self.settings = {"answer_threshold": 0.25} if settings is None else settings |
| | | self.errors = [] |
| | | self.warnings = [] |
| | | self.sid = None |
| | | self.sid_classifier = sid_classifier |
| | | if filename is not None: |
| | | self.loadImage(filename) |
| | | self.runOcr() |
| | | |
| | | def loadImage(self, filename, rgbchannel=0): |
| | | self.img = cv2.imread(filename, rgbchannel) |
| | | if self.img is None: |
| | | self.errors.append("File could not be loaded!") |
| | | self.invalid = True |
| | | return |
| | | self.imgHeight, self.imgWidth = self.img.shape[0:2] |
| | | |
| | | class Paper(): |
| | | |
| | | def __init__(self, filename=None): |
| | | self.filename=filename |
| | | self.invalid=None |
| | | self.QRData=None |
| | | self.errors=[] |
| | | self.warnings=[] |
| | | if filename is not None: |
| | | self.loadImage(filename) |
| | | self.runOcr() |
| | | def saveImage(self, filename="debug_image.png"): |
| | | cv2.imwrite(filename, self.img) |
| | | |
| | | def runOcr(self): |
| | | if self.invalid == True: |
| | | return |
| | | self.decodeQRandRotate() |
| | | self.imgTreshold() |
| | | skewAngle = 0 |
| | | # try: |
| | | # skewAngle=self.getSkewAngle() |
| | | # except: |
| | | # self.errors.append("Could not determine skew angle!") |
| | | # self.rotateAngle(skewAngle) |
| | | |
| | | def loadImage(self, filename, rgbchannel=0): |
| | | self.img=cv2.imread(filename,rgbchannel) |
| | | if self.img is None: |
| | | self.errors.append("File could not be loaded!") |
| | | self.invalid=True |
| | | return |
| | | self.imgHeight, self.imgWidth = self.img.shape[0:2] |
| | | self.generateAnswerMatrix() |
| | | |
| | | def saveImage(self, filename='debug_image.png'): |
| | | cv2.imwrite(filename, self.img) |
| | | self.saveImage() |
| | | |
| | | def runOcr(self): |
| | | if self.invalid==True: |
| | | return |
| | | self.decodeQRandRotate() |
| | | self.imgTreshold() |
| | | skewAngle=0 |
| | | # try: |
| | | # skewAngle=self.getSkewAngle() |
| | | # except: |
| | | # self.errors.append("Could not determine skew angle!") |
| | | # self.rotateAngle(skewAngle) |
| | | def decodeQRandRotate(self): |
| | | if self.invalid == True: |
| | | return |
| | | blur = cv2.blur(self.img, (3, 3)) |
| | | d = decode(blur) |
| | | self.img = blur |
| | | if len(d) == 0: |
| | | self.errors.append("QR code could not be found!") |
| | | self.data = None |
| | | self.invalid = True |
| | | return |
| | | if(len(d)>1): #if there are multiple codes, get first ean or qr code available. |
| | | for dd in d: |
| | | if(dd.type=="EAN13" or dd.type=="QR"): |
| | | d[0]=dd |
| | | break |
| | | self.QRDecode = d |
| | | self.QRData = d[0].data |
| | | xpos = d[0].rect.left |
| | | ypos = d[0].rect.top |
| | | # check if image is rotated wrongly |
| | | if xpos > self.imgHeight / 2.0 and ypos > self.imgWidth / 2.0: |
| | | self.rotateAngle(180) |
| | | |
| | | self.generateAnswerMatrix() |
| | | def rotateAngle(self, angle=0): |
| | | # rot_mat = cv2.getRotationMatrix2D( |
| | | # (self.imgHeight / 2, self.imgWidth / 2), angle, 1.0 |
| | | # ) |
| | | rot_mat = cv2.getRotationMatrix2D( |
| | | (self.imgWidth / 2, self.imgHeight / 2), angle, 1.0 |
| | | ) |
| | | result = cv2.warpAffine( |
| | | self.img, |
| | | rot_mat, |
| | | (self.imgWidth, self.imgHeight), |
| | | flags=cv2.INTER_CUBIC, |
| | | borderMode=cv2.BORDER_CONSTANT, |
| | | borderValue=(255, 255, 255), |
| | | ) |
| | | |
| | | self.saveImage() |
| | | self.img = result |
| | | self.imgHeight, self.imgWidth = self.img.shape[0:2] |
| | | |
| | | def decodeQRandRotate(self): |
| | | if self.invalid == True: |
| | | return |
| | | blur = cv2.blur(self.img,(3,3)) |
| | | d=decode(blur) |
| | | self.img=blur |
| | | if len(d) == 0: |
| | | self.errors.append("QR code could not be found!") |
| | | self.data=None |
| | | self.invalid=True |
| | | return |
| | | self.QRDecode=d |
| | | self.QRData=d[0].data |
| | | xpos=d[0].rect.left |
| | | ypos=d[0].rect.top |
| | | #check if image is rotated wrongly |
| | | if xpos>self.imgHeight/2.0 and ypost>self.imgWidth/2.0: |
| | | self.rotate(180) |
| | | # todo, make better tresholding |
| | | |
| | | def rotateAngle(self,angle=0): |
| | | rot_mat = cv2.getRotationMatrix2D((self.imgHeight/2, self.imgWidth/2), angle, 1.0) |
| | | result = cv2.warpAffine(self.img, |
| | | rot_mat, |
| | | (self.imgHeight, self.imgWidth), |
| | | flags=cv2.INTER_CUBIC, |
| | | borderMode=cv2.BORDER_CONSTANT, |
| | | borderValue=(255, 255, 255)) |
| | | def imgTreshold(self): |
| | | (self.thresh, self.bwimg) = cv2.threshold( |
| | | self.img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU |
| | | ) |
| | | |
| | | self.img=result |
| | | self.imgHeight, self.imgWidth = self.img.shape[0:2] |
| | | def getSkewAngle(self): |
| | | neg = 255 - self.bwimg # get negative image |
| | | cv2.imwrite("debug_1.png", neg) |
| | | |
| | | angle_counter = 0 # number of angles |
| | | angle = 0.0 # collects sum of angles |
| | | cimg = cv2.cvtColor(self.img, cv2.COLOR_GRAY2BGR) |
| | | |
| | | #todo, make better tresholding |
| | | def imgTreshold(self): |
| | | (self.thresh, self.bwimg) = cv2.threshold(self.img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) |
| | | |
| | | # get all the Hough lines |
| | | for line in cv2.HoughLinesP(neg, 1, np.pi / 180, 325): |
| | | x1, y1, x2, y2 = line[0] |
| | | cv2.line(cimg, (x1, y1), (x2, y2), (0, 0, 255), 2) |
| | | # calculate the angle (in radians) |
| | | this_angle = np.arctan2(y2 - y1, x2 - x1) |
| | | if this_angle and abs(this_angle) <= 10: |
| | | # filtered zero degree and outliers |
| | | angle += this_angle |
| | | angle_counter += 1 |
| | | |
| | | def getSkewAngle(self): |
| | | neg = 255 - self.bwimg # get negative image |
| | | cv2.imwrite('debug_1.png', neg) |
| | | # the skew is calculated of the mean of the total angles, #try block helps with division by zero. |
| | | try: |
| | | skew = np.rad2deg( |
| | | angle / angle_counter |
| | | ) # the 1.2 factor is just experimental.... |
| | | except: |
| | | skew = 0 |
| | | |
| | | angle_counter = 0 # number of angles |
| | | angle = 0.0 # collects sum of angles |
| | | cimg = cv2.cvtColor(self.img,cv2.COLOR_GRAY2BGR) |
| | | cv2.imwrite("debug_2.png", cimg) |
| | | return skew |
| | | |
| | | # get all the Hough lines |
| | | for line in cv2.HoughLinesP(neg, 1, np.pi/180, 325): |
| | | x1, y1, x2, y2 = line[0] |
| | | cv2.line(cimg,(x1,y1), (x2,y2), (0,0,255),2) |
| | | # calculate the angle (in radians) |
| | | this_angle = np.arctan2(y2 - y1, x2 - x1) |
| | | if this_angle and abs(this_angle) <= 10: |
| | | # filtered zero degree and outliers |
| | | angle += this_angle |
| | | angle_counter += 1 |
| | | def locateUpMarkers(self, threshold=0.85, height=200): |
| | | template = cv2.imread("template.png", 0) |
| | | w, h = template.shape[::-1] |
| | | crop_img = self.img[0:height, :] |
| | | res = cv2.matchTemplate(crop_img, template, cv2.TM_CCOEFF_NORMED) |
| | | loc = np.where(res >= threshold) |
| | | cimg = cv2.cvtColor(crop_img, cv2.COLOR_GRAY2BGR) |
| | | # remove false matching of the squares in qr code |
| | | loc_filtered_x = [] |
| | | loc_filtered_y = [] |
| | | if len(loc[0]) == 0: |
| | | min_y = -1 |
| | | else: |
| | | min_y = np.min(loc[0]) |
| | | for pt in zip(*loc[::-1]): |
| | | if pt[1] < min_y + 20: |
| | | loc_filtered_y.append(pt[1]) |
| | | loc_filtered_x.append(pt[0]) |
| | | # order by x coordinate |
| | | loc_filtered_x, loc_filtered_y = zip( |
| | | *sorted(zip(loc_filtered_x, loc_filtered_y)) |
| | | ) |
| | | # loc=[loc_filtered_y,loc_filtered_x] |
| | | # remove duplicates |
| | | a = np.diff(loc_filtered_x) > 40 |
| | | a = np.append(a, True) |
| | | loc_filtered_x = np.array(loc_filtered_x) |
| | | loc_filtered_y = np.array(loc_filtered_y) |
| | | loc = [loc_filtered_y[a], loc_filtered_x[a]] |
| | | for pt in zip(*loc[::-1]): |
| | | cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) |
| | | |
| | | # the skew is calculated of the mean of the total angles, #try block helps with division by zero. |
| | | try: |
| | | skew = np.rad2deg(angle / angle_counter) #the 1.2 factor is just experimental.... |
| | | except: |
| | | skew=0 |
| | | cv2.imwrite("debug_3.png", cimg) |
| | | |
| | | cv2.imwrite('debug_2.png',cimg) |
| | | return skew |
| | | self.xMarkerLocations = loc |
| | | return loc |
| | | |
| | | def locateRightMarkers(self, threshold=0.85, width=200): |
| | | template = cv2.imread("template.png", 0) |
| | | w, h = template.shape[::-1] |
| | | crop_img = self.img[:, -width:] |
| | | res = cv2.matchTemplate(crop_img, template, cv2.TM_CCOEFF_NORMED) |
| | | loc = np.where(res >= threshold) |
| | | cimg = cv2.cvtColor(crop_img, cv2.COLOR_GRAY2BGR) |
| | | # remove false matching of the squares in qr code |
| | | loc_filtered_x = [] |
| | | loc_filtered_y = [] |
| | | if len(loc[1]) == 0: |
| | | min_x = -1 |
| | | else: |
| | | max_x = np.max(loc[1]) |
| | | for pt in zip(*loc[::-1]): |
| | | if pt[1] > max_x - 20: |
| | | loc_filtered_y.append(pt[1]) |
| | | loc_filtered_x.append(pt[0]) |
| | | # order by y coordinate |
| | | loc_filtered_y, loc_filtered_x = zip( |
| | | *sorted(zip(loc_filtered_y, loc_filtered_x)) |
| | | ) |
| | | # loc=[loc_filtered_y,loc_filtered_x] |
| | | # remove duplicates |
| | | a = np.diff(loc_filtered_y) > 40 |
| | | a = np.append(a, True) |
| | | loc_filtered_x = np.array(loc_filtered_x) |
| | | loc_filtered_y = np.array(loc_filtered_y) |
| | | loc = [loc_filtered_y[a], loc_filtered_x[a]] |
| | | for pt in zip(*loc[::-1]): |
| | | cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) |
| | | |
| | | def locateUpMarkers(self, threshold=0.8, height=200): |
| | | template = cv2.imread('template.png',0) |
| | | w, h = template.shape[::-1] |
| | | crop_img = self.img[0:height, :] |
| | | res = cv2.matchTemplate(crop_img,template,cv2.TM_CCOEFF_NORMED) |
| | | loc = np.where( res >= threshold) |
| | | cimg = cv2.cvtColor(crop_img,cv2.COLOR_GRAY2BGR) |
| | | #remove false matching of the squares in qr code |
| | | loc_filtered_x=[] |
| | | loc_filtered_y=[] |
| | | min_y=np.min(loc[0]) |
| | | for pt in zip(*loc[::-1]): |
| | | if(pt[1]<min_y+20): |
| | | loc_filtered_y.append(pt[1]) |
| | | loc_filtered_x.append(pt[0]) |
| | | #order by x coordinate |
| | | loc_filtered_x,loc_filtered_y = zip(*sorted(zip(loc_filtered_x, loc_filtered_y))) |
| | | #loc=[loc_filtered_y,loc_filtered_x] |
| | | #remove duplicates |
| | | a=np.diff(loc_filtered_x)>40 |
| | | a=np.append(a,True) |
| | | loc_filtered_x=np.array(loc_filtered_x) |
| | | loc_filtered_y=np.array(loc_filtered_y) |
| | | loc=[loc_filtered_y[a],loc_filtered_x[a]] |
| | | for pt in zip(*loc[::-1]): |
| | | cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2) |
| | | cv2.imwrite("debug_4.png", cimg) |
| | | |
| | | self.yMarkerLocations = [loc[0], loc[1] + self.imgWidth - width] |
| | | return self.yMarkerLocations |
| | | |
| | | cv2.imwrite('debug_3.png',cimg) |
| | | def generateAnswerMatrix(self): |
| | | self.locateUpMarkers() |
| | | self.locateRightMarkers() |
| | | |
| | | self.xMarkerLocations=loc |
| | | return loc |
| | | roixoff = 10 |
| | | roiyoff = 5 |
| | | roiwidth = 50 |
| | | roiheight = roiwidth |
| | | totpx = roiwidth * roiheight |
| | | |
| | | def locateRightMarkers(self, threshold=0.8, width=200): |
| | | template = cv2.imread('template.png',0) |
| | | w, h = template.shape[::-1] |
| | | crop_img = self.img[:, -width:] |
| | | res = cv2.matchTemplate(crop_img,template,cv2.TM_CCOEFF_NORMED) |
| | | loc = np.where( res >= threshold) |
| | | cimg = cv2.cvtColor(crop_img,cv2.COLOR_GRAY2BGR) |
| | | #remove false matching of the squares in qr code |
| | | loc_filtered_x=[] |
| | | loc_filtered_y=[] |
| | | max_x=np.max(loc[1]) |
| | | for pt in zip(*loc[::-1]): |
| | | if(pt[1]>max_x-20): |
| | | loc_filtered_y.append(pt[1]) |
| | | loc_filtered_x.append(pt[0]) |
| | | #order by y coordinate |
| | | loc_filtered_y,loc_filtered_x = zip(*sorted(zip(loc_filtered_y, loc_filtered_x))) |
| | | #loc=[loc_filtered_y,loc_filtered_x] |
| | | #remove duplicates |
| | | a=np.diff(loc_filtered_y)>40 |
| | | a=np.append(a,True) |
| | | loc_filtered_x=np.array(loc_filtered_x) |
| | | loc_filtered_y=np.array(loc_filtered_y) |
| | | loc=[loc_filtered_y[a],loc_filtered_x[a]] |
| | | for pt in zip(*loc[::-1]): |
| | | cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2) |
| | | self.answerMatrix = [] |
| | | for y in self.yMarkerLocations[0]: |
| | | oneline = [] |
| | | for x in self.xMarkerLocations[1]: |
| | | roi = self.bwimg[ |
| | | y - roiyoff : y + int(roiheight - roiyoff), |
| | | x - roixoff : x + int(roiwidth - roixoff), |
| | | ] |
| | | # cv2.imwrite('ans_x'+str(x)+'_y_'+str(y)+'.png',roi) |
| | | black = totpx - cv2.countNonZero(roi) |
| | | oneline.append(black / totpx) |
| | | self.answerMatrix.append(oneline) |
| | | |
| | | def get_enhanced_sid(self): |
| | | if self.sid_classifier is None: |
| | | return "x" |
| | | if self.settings is not None: |
| | | sid_mask = self.settings.get("sid_mask", None) |
| | | es, err, warn = getSID( |
| | | self.img[ |
| | | int(0.04 * self.imgHeight) : int(0.095 * self.imgHeight), |
| | | int(0.7 * self.imgWidth) : int(0.99 * self.imgWidth), |
| | | ], |
| | | self.sid_classifier, |
| | | sid_mask, |
| | | ) |
| | | [self.errors.append(e) for e in err] |
| | | [self.warnings.append(w) for w in warn] |
| | | return es |
| | | |
| | | cv2.imwrite('debug_4.png',cimg) |
| | | def get_code_data(self): |
| | | if self.QRData is None: |
| | | self.errors.append("Could not read QR or EAN code! Not an exam?") |
| | | retval = { |
| | | "exam_id": None, |
| | | "page_no": None, |
| | | "paper_id": None, |
| | | "faculty_id": None, |
| | | "sid": None, |
| | | } |
| | | return retval |
| | | qrdata = bytes.decode(self.QRData, "utf8") |
| | | if self.QRDecode[0].type == "EAN13": |
| | | return { |
| | | "exam_id": int(qrdata[0:7]), |
| | | "page_no": int(qrdata[7]), |
| | | "paper_id": int(qrdata[-5:-1]), |
| | | "faculty_id": None, |
| | | "sid": None, |
| | | } |
| | | else: |
| | | data = qrdata.split(",") |
| | | retval = { |
| | | "exam_id": int(data[1]), |
| | | "page_no": int(data[3]), |
| | | "paper_id": int(data[2]), |
| | | "faculty_id": int(data[0]), |
| | | } |
| | | if len(data) > 4: |
| | | retval["sid"] = data[4] |
| | | |
| | | self.yMarkerLocations=[loc[0], loc[1]+self.imgWidth-width] |
| | | return self.yMarkerLocations |
| | | return retval |
| | | |
| | | |
| | | def generateAnswerMatrix(self): |
| | | self.locateUpMarkers() |
| | | self.locateRightMarkers() |
| | | |
| | | roixoff=10 |
| | | roiyoff=5 |
| | | roiwidth=50 |
| | | roiheight=roiwidth |
| | | totpx=roiwidth*roiheight |
| | | |
| | | self.answerMatrix=[] |
| | | for y in self.yMarkerLocations[0]: |
| | | oneline=[] |
| | | for x in self.xMarkerLocations[1]: |
| | | roi=self.bwimg[ y-roiyoff:y+int(roiheight-roiyoff),x-roixoff:x+int(roiwidth-roixoff)] |
| | | #cv2.imwrite('ans_x'+str(x)+'_y_'+str(y)+'.png',roi) |
| | | black=totpx-cv2.countNonZero(roi) |
| | | oneline.append(black/totpx) |
| | | self.answerMatrix.append(oneline) |
| | | |
| | | def get_paper_ocr_data(self): |
| | | data = self.get_code_data() |
| | | data["qr"] = self.QRData |
| | | data["errors"] = self.errors |
| | | data["warnings"] = self.warnings |
| | | data["up_position"] = ( |
| | | list(self.xMarkerLocations[1] / self.imgWidth), |
| | | list(self.yMarkerLocations[1] / self.imgHeight), |
| | | ) |
| | | data["right_position"] = ( |
| | | list(self.xMarkerLocations[1] / self.imgWidth), |
| | | list(self.yMarkerLocations[1] / self.imgHeight), |
| | | ) |
| | | data["ans_matrix"] = ( |
| | | (np.array(self.answerMatrix) > self.settings["answer_threshold"]) * 1 |
| | | ).tolist() |
| | | if data["sid"] is None and data["page_no"] == 0: |
| | | data["sid"] = self.get_enhanced_sid() |
| | | return data |