| | |
| | | |
| | | import pkg_resources |
| | | |
| | | templatefile = '/template-8.png' # always use slash |
| | | templatefile = "/template-8.png" # always use slash |
| | | template8 = pkg_resources.resource_filename(__name__, templatefile) |
| | | |
| | | |
| | |
| | | return np.ones((x, y), np.uint8) |
| | | |
| | | |
| | | def find_biggest_blob(image, original_image,sid_mask): |
| | | def find_biggest_blob(image, original_image, sid_mask): |
| | | if sid_mask[0] == "1": |
| | | move_left = 45 |
| | | elif sid_mask[0] == "x": |
| | | move_left = 55 |
| | | move_left = 50 |
| | | else: |
| | | move_left = 0 |
| | | # Remove noise |
| | | # Remove noise |
| | | image2 = cv2.morphologyEx( |
| | | original_image, cv2.MORPH_OPEN, kernel(2, 2), iterations=7 |
| | | original_image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3 |
| | | ) |
| | | # find biggest block of pixels |
| | | image1 = cv2.morphologyEx(image2, cv2.MORPH_DILATE, kernel(5, 25), iterations=4) |
| | | image1 = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(5, 25), iterations=3) |
| | | image1 = img_as_ubyte(image1 > 50) |
| | | cv2.imwrite("/tmp/sidblock1.png", image1) |
| | | im2, ctrs, hier = cv2.findContours( |
| | |
| | | ctrs, key=lambda ctr: cv2.contourArea(ctr) |
| | | ) # get bigges contour |
| | | x, y, w, h = cv2.boundingRect(sorted_ctrs[-1]) |
| | | image = image[y : y + h, x + 25 - move_left : x + w - 40] # +25,-25 |
| | | image = image[y : y + h, x + 25 - move_left : x + w - 30] # +25,-25 |
| | | return image |
| | | |
| | | |
| | | def sid_compare(sid_no, sid_mask): |
| | | """ |
| | |
| | | return True |
| | | |
| | | |
| | | def segment_by_contours(image, original_image, classifier,sid_mask): |
| | | def segment_by_contours(image, original_image, classifier, sid_mask): |
| | | """ |
| | | First algorithm. it segments numerals with contours. It works with numbers where individual numerals does not touch. |
| | | :param image: |
| | |
| | | """ |
| | | |
| | | sid_no = "" |
| | | image=find_biggest_blob(image,original_image,sid_mask) |
| | | cv2.imwrite("sid_contour1.png",image) |
| | | image = find_biggest_blob(image, original_image, sid_mask) |
| | | cv2.imwrite("/tmp/sid_contour1.png", image) |
| | | im2, ctrs, hier = cv2.findContours( |
| | | image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
| | | ) |
| | |
| | | # Get bounding box |
| | | x, y, w, h = cv2.boundingRect(ctr) |
| | | # Getting ROI |
| | | if w < h / 2: |
| | | if w < h / 3: |
| | | sid_no = sid_no + "1" |
| | | continue |
| | | roi = image[y : y + h, x : x + w] |
| | |
| | | """ |
| | | sid_no = "" |
| | | sid_len = len(sid_mask) |
| | | image=find_biggest_blob(image,original_image,sid_mask) |
| | | image = find_biggest_blob(image, original_image, sid_mask) |
| | | cv2.imwrite("/tmp/sidblock2.png", image) |
| | | imgHeight, imgWidth = image.shape[0:2] |
| | | numWidth = int(imgWidth / (sid_len)) |
| | |
| | | sid_err = [] |
| | | image = 255 - image |
| | | image_original = image.copy() |
| | | image = img_as_ubyte(image > 100) |
| | | image = img_as_ubyte(image > 70) |
| | | cv2.imwrite("/tmp/enSID0.png", image) |
| | | |
| | | # Remove noise |
| | | image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3) |
| | | image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=2) |
| | | |
| | | # Closing. Connect non connected parts |
| | | image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4) |
| | | image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 1), iterations=4) |
| | | |
| | | # Again noise removal after closing |
| | | # image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) |
| | | #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) |
| | | # don't do too much noise removal. |
| | | image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1) |
| | | #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=2) |
| | | |
| | | # Skeletonization |
| | | #image = img_as_ubyte(morphology.skeletonize(image > 128)) |
| | | image = img_as_ubyte(morphology.thin(image > 128)) |
| | | cv2.imwrite("/tmp/enSID1.png", image) |
| | | |
| | | # Stub removal (might not be necessary if thinning instead of skeletonize is used above |
| | | # Making lines stronger |
| | | image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(5, 5), iterations=1) |
| | | image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(5, 2), iterations=1) |
| | | image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(10, 10)) |
| | | |
| | | # Thining again |
| | |
| | | |
| | | if not sid_compare(sid_no, sid_mask): |
| | | sid_err = ["Wrong SID!"] |
| | | |
| | | cv2.imwrite("/tmp/SID_"+sid_no+".png", image) |
| | | return sid_no, sid_err, sid_warn |