| | |
| | | from Ocr import Paper |
| | | from sklearn.externals import joblib |
| | | |
| | | classifier = joblib.load('filename.joblib') |
| | | from glob import glob |
| | | |
| | | #p=Paper(filename='testpage300dpi_scan1.png') |
| | | p=Paper(filename='sizif111.tif', sid_classifier=classifier) |
| | | #p=Paper(filename='processed_scans/20141016095134535_0028.tif') |
| | | settings = {"sid_mask": "64xx0xxx", "answer_treshold": 0.25} |
| | | classifier = joblib.load("filename.joblib") |
| | | |
| | | print(p.QRData) |
| | | print(p.errors) |
| | | #p = Paper(filename="testpage300dpi_scan1.png") |
| | | #p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings={"sid_mask": "11xx0xxx", "answer_treshold": 0.25}) |
| | | #p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings) |
| | | #p = Paper(filename="processed_scans/20151111080408825_0001.tif",sid_classifier=classifier,settings=settings,) |
| | | #p=Paper(filename='processed_scans/20151028145444607_0028.tif', sid_classifier=classifier, settings=settings) |
| | | pa = [ |
| | | "processed_scans/20141016095134535_0006.tif", |
| | | "processed_scans/20141016095134535_0028.tif", |
| | | "processed_scans/20141016095134535_0028.tif", |
| | | "processed_scans/20141016095134535_0037.tif", |
| | | "processed_scans/20141021095744144_0005.tif", |
| | | "processed_scans/20141021095744144_0009.tif", |
| | | "processed_scans/20141028095553745_0018.tif", |
| | | "processed_scans/20151013180545275_0011.tif" |
| | | ] |
| | | p=Paper(filename=pa[7], sid_classifier=classifier, settings=settings) |
| | | |
| | | print(p.getSkewAngle()) |
| | | print(p.locateUpMarkers()) |
| | | print(p.locateRightMarkers()) |
| | | print(p.answerMatrix) |
| | | p.get_enhanced_sid() |
| | | # print(p.QRData) |
| | | # print(p.errors) |
| | | |
| | | # print(p.getSkewAngle()) |
| | | # print(p.locateUpMarkers()) |
| | | # print(p.locateRightMarkers()) |
| | | # print(p.answerMatrix) |
| | | # p.get_enhanced_sid() |
| | | |
| | | |
| | | print(p.get_paper_ocr_data()) |
| | | exit(0) |
| | | filelist = glob("processed_scans/*.tif") |
| | | for f in sorted(filelist): |
| | | print("processing: {}".format(f)) |
| | | print( |
| | | f, |
| | | Paper( |
| | | filename=f, sid_classifier=classifier, settings=settings |
| | | ).get_paper_ocr_data(), |
| | | ) |