| | |
| | | from pyzbar.pyzbar import decode |
| | | from sid_process import enhanceSID |
| | | from sid_process import getSID |
| | | import cv2 |
| | | import numpy as np |
| | | import math |
| | | |
| | | |
| | | class Paper: |
| | | def __init__(self, filename=None): |
| | | def __init__(self, filename=None, sid_classifier=None, settings=None): |
| | | self.filename = filename |
| | | self.invalid = None |
| | | self.QRData = None |
| | | self.settings = settings |
| | | self.errors = [] |
| | | self.warnings = [] |
| | | self.sid_classifier = sid_classifier |
| | | if filename is not None: |
| | | self.loadImage(filename) |
| | | self.runOcr() |
| | |
| | | loc_filtered_x, loc_filtered_y = zip( |
| | | *sorted(zip(loc_filtered_x, loc_filtered_y)) |
| | | ) |
| | | # loc=[loc_filtered_y,loc_filtered_x] |
| | | # remove duplicates |
| | | # loc=[loc_filtered_y,loc_filtered_x] |
| | | # remove duplicates |
| | | a = np.diff(loc_filtered_x) > 40 |
| | | a = np.append(a, True) |
| | | loc_filtered_x = np.array(loc_filtered_x) |
| | |
| | | self.answerMatrix.append(oneline) |
| | | |
| | | def get_enhanced_sid(self): |
| | | es= enhanceSID(self.img[int(0.04*self.imgHeight):int(0.08*self.imgHeight), int(0.7*self.imgWidth):int(0.99*self.imgWidth)]) |
| | | cv2.imwrite("enhancedSID.png",es) |
| | | if self.sid_classifier is None: |
| | | return "x" |
| | | if self.settings is not None: |
| | | sid_mask=self.settings.get("sid_mask", None) |
| | | es = getSID( |
| | | self.img[ |
| | | int(0.045 * self.imgHeight) : int(0.085 * self.imgHeight), |
| | | int(0.7 * self.imgWidth) : int(0.99 * self.imgWidth), |
| | | ], |
| | | self.sid_classifier, |
| | | sid_mask |
| | | ) |
| | | return es |