| | |
| | | from Ocr import Paper |
| | | from aoi_ocr.Ocr import Paper |
| | | from sklearn.externals import joblib |
| | | import pkg_resources |
| | | |
| | | path = "/filename.joblib" # always use slash |
| | | filepath = pkg_resources.resource_filename("aoi_ocr", path) |
| | | |
| | | from glob import glob |
| | | |
| | | settings = {"sid_mask": "64xx0xxx", "answer_treshold": 0.25} |
| | | classifier = joblib.load("filename.joblib") |
| | | settings = {"sid_mask": "11x0xxxx", "answer_threshold": 0.25} |
| | | classifier = joblib.load(filepath) |
| | | |
| | | # p = Paper(filename="testpage300dpi_scan1.png") |
| | | #p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings={"sid_mask": "11xx0xxx", "answer_treshold": 0.25}) |
| | | #p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings) |
| | | #p = Paper(filename="processed_scans/20151111080408825_0001.tif",sid_classifier=classifier,settings=settings,) |
| | | #p=Paper(filename='processed_scans/20151028145444607_0028.tif', sid_classifier=classifier, settings=settings) |
| | | # p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings={"sid_mask": "11xx0xxx", "answer_threshold": 0.25}) |
| | | # p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings) |
| | | # p = Paper(filename="processed_scans/20151111080408825_0001.tif",sid_classifier=classifier,settings=settings,) |
| | | # p=Paper(filename='processed_scans/20151028145444607_0028.tif', sid_classifier=classifier, settings=settings) |
| | | pa = [ |
| | | "processed_scans/20141016095134535_0006.tif", |
| | | "processed_scans/20141016095134535_0028.tif", |
| | |
| | | "processed_scans/20141021095744144_0005.tif", |
| | | "processed_scans/20141021095744144_0009.tif", |
| | | "processed_scans/20141028095553745_0018.tif", |
| | | "processed_scans/20151013180545275_0011.tif", |
| | | "processed_scans/20160408140801098_0004.tif", |
| | | "processed_scans/20160510075445995_0026.tif", |
| | | ] |
| | | p=Paper(filename=pa[6], sid_classifier=classifier, settings=settings) |
| | | # p=Paper(filename=pa[9], sid_classifier=classifier, settings=settings) |
| | | p = Paper(filename="sizif-test.tif", sid_classifier=classifier, settings=settings) |
| | | |
| | | # print(p.QRData) |
| | | # print(p.errors) |
| | | |
| | | # print(p.getSkewAngle()) |
| | | # print(p.locateUpMarkers()) |
| | | # print(p.locateUpMarkers())%% |
| | | # print(p.locateRightMarkers()) |
| | | # print(p.answerMatrix) |
| | | # p.get_enhanced_sid() |
| | |
| | | |
| | | print(p.get_paper_ocr_data()) |
| | | |
| | | exit(0) |
| | | filelist = glob("processed_scans/*.tif") |
| | | wrong_sid = 0 |
| | | total = 0 |
| | | for f in sorted(filelist): |
| | | print("processing: {}".format(f)) |
| | | print( |
| | | f, |
| | | Paper( |
| | | filename=f, sid_classifier=classifier, settings=settings |
| | | ).get_paper_ocr_data(), |
| | | ) |
| | | p = Paper( |
| | | filename=f, sid_classifier=classifier, settings=settings |
| | | ).get_paper_ocr_data() |
| | | print(f, p) |
| | | if p["page_no"] == 0: |
| | | total += 1 |
| | | if len(p["errors"]) != 0: |
| | | wrong_sid += 1 |
| | | if total % 10 == 0: |
| | | print("Total:{}, wrong SID: {}".format(total, wrong_sid)) |
| | | |
| | | print("Total:{}, wrong SID: {}".format(total, wrong_sid)) |