#include<stdlib.h>
|
#include<stdio.h>
|
#include<math.h>
|
//#include "io.h"
|
#include "general.h"
|
#include "timestep.h"
|
#include "vertexmove.h"
|
#include "bondflip.h"
|
#include "frame.h"
|
#include "io.h"
|
#include "stats.h"
|
#include "sh.h"
|
#include "shcomplex.h"
|
#include "vesicle.h"
|
|
ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){
|
ts_uint i, j,k;
|
ts_double r0,kc1,kc2,kc3,kc4;
|
ts_double l1,l2,l3,volume=0.0,area=0.0,vmsr,bfsr, vmsrt, bfsrt;
|
ts_ulong epochtime;
|
FILE *fd1;
|
// char filename[255];
|
FILE *fd=fopen("statistics.csv","w");
|
if(fd==NULL){
|
fatal("Cannot open statistics.csv file for writing",1);
|
}
|
fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n");
|
centermass(vesicle);
|
cell_occupation(vesicle);
|
if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps);
|
for(i=start_iteration;i<inititer+iterations;i++){
|
vmsr=0.0;
|
bfsr=0.0;
|
for(j=0;j<mcsweeps;j++){
|
single_timestep(vesicle, &vmsrt, &bfsrt);
|
vmsr+=vmsrt;
|
bfsr+=bfsrt;
|
}
|
vmsr/=(ts_double)mcsweeps;
|
bfsr/=(ts_double)mcsweeps;
|
centermass(vesicle);
|
cell_occupation(vesicle);
|
ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps);
|
dump_state(vesicle,i);
|
if(i>=inititer){
|
write_vertex_xml_file(vesicle,i-inititer);
|
write_master_xml_file("test.pvd");
|
epochtime=get_epoch();
|
gyration_eigen(vesicle, &l1, &l2, &l3);
|
vesicle_volume(vesicle); //calculates just volume. Area is not added to ts_vesicle yet!
|
get_area_volume(vesicle, &area,&volume); //that's why I must recalculate area (and volume for no particular reason).
|
r0=getR0(vesicle);
|
if(vesicle->sphHarmonics!=NULL){
|
preparationSh(vesicle,r0);
|
//calculateYlmi(vesicle);
|
calculateUlmComplex(vesicle);
|
storeUlmComplex2(vesicle);
|
saveAvgUlm2(vesicle);
|
kc1=calculateKc(vesicle, 2,9);
|
kc2=calculateKc(vesicle, 6,9);
|
kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l);
|
kc4=calculateKc(vesicle, 3,6);
|
|
fd1=fopen("state.dat","w");
|
fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle));
|
for(k=0;k<vesicle->vlist->n;k++){
|
fprintf(fd1,"%e %e %e %e %e\n",
|
vesicle->vlist->vtx[k]->x,
|
vesicle->vlist->vtx[k]->y,
|
vesicle->vlist->vtx[k]->z,
|
vesicle->vlist->vtx[k]->solAngle,
|
vesicle->vlist->vtx[k]->relR
|
);
|
}
|
fclose(fd1);
|
}
|
|
fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,volume, area,l1,l2,l3,kc1, kc2, kc3,kc4);
|
fflush(fd);
|
// sprintf(filename,"timestep-%05d.pov",i-inititer);
|
// write_pov_file(vesicle,filename);
|
}
|
}
|
fclose(fd);
|
return TS_SUCCESS;
|
}
|
|
ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){
|
ts_bool retval;
|
ts_double rnvec[3];
|
ts_uint i,j,b;
|
ts_uint vmsrcnt=0;
|
for(i=0;i<vesicle->vlist->n;i++){
|
rnvec[0]=drand48();
|
rnvec[1]=drand48();
|
rnvec[2]=drand48();
|
retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec);
|
if(retval==TS_SUCCESS) vmsrcnt++;
|
}
|
|
ts_int bfsrcnt=0;
|
for(i=0;i<3*vesicle->vlist->n;i++){
|
b=rand() % vesicle->blist->n;
|
//find a bond and return a pointer to a bond...
|
//call single_bondflip_timestep...
|
retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec);
|
if(retval==TS_SUCCESS) bfsrcnt++;
|
}
|
|
for(i=0;i<vesicle->poly_list->n;i++){
|
for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){
|
rnvec[0]=drand48();
|
rnvec[1]=drand48();
|
rnvec[2]=drand48();
|
retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec);
|
}
|
}
|
|
|
for(i=0;i<vesicle->filament_list->n;i++){
|
for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){
|
rnvec[0]=drand48();
|
rnvec[1]=drand48();
|
rnvec[2]=drand48();
|
retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec);
|
}
|
}
|
|
|
// printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0);
|
*vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n;
|
*bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0;
|
return TS_SUCCESS;
|
}
|