/* vim: set ts=4 sts=4 sw=4 noet : */
|
#include<stdlib.h>
|
#include<math.h>
|
#include "general.h"
|
#include "vertex.h"
|
#include "bond.h"
|
#include "triangle.h"
|
#include "vesicle.h"
|
#include "energy.h"
|
#include "timestep.h"
|
#include "cell.h"
|
//#include "io.h"
|
#include "io.h"
|
#include<stdio.h>
|
#include "vertexmove.h"
|
#include <string.h>
|
#include "constvol.h"
|
|
ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){
|
ts_uint i;
|
ts_double dist;
|
ts_bool retval;
|
ts_uint cellidx;
|
ts_double delta_energy, delta_energy_cv,oenergy,dvol=0.0, darea=0.0;
|
ts_double costheta,sintheta,phi,r;
|
//This will hold all the information of vtx and its neighbours
|
ts_vertex backupvtx[20], *constvol_vtx_moved=NULL, *constvol_vtx_backup=NULL;
|
memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex));
|
|
//Some stupid tests for debugging cell occupation!
|
/* cellidx=vertex_self_avoidance(vesicle, vtx);
|
if(vesicle->clist->cell[cellidx]==vtx->cell){
|
fprintf(stderr,"Idx match!\n");
|
} else {
|
fprintf(stderr,"***** Idx don't match!\n");
|
fatal("ENding.",1);
|
}
|
*/
|
|
//temporarly moving the vertex
|
// vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0);
|
// vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0);
|
// vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0);
|
|
//random move in a sphere with radius stepsize:
|
r=vesicle->stepsize*rn[0];
|
phi=rn[1]*2*M_PI;
|
costheta=2*rn[2]-1;
|
sintheta=sqrt(1-pow(costheta,2));
|
vtx->x=vtx->x+r*sintheta*cos(phi);
|
vtx->y=vtx->y+r*sintheta*sin(phi);
|
vtx->z=vtx->z+r*costheta;
|
|
|
//distance with neighbours check
|
for(i=0;i<vtx->neigh_no;i++){
|
dist=vtx_distance_sq(vtx,vtx->neigh[i]);
|
if(dist<1.0 || dist>vesicle->dmax) {
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
}
|
|
// Distance with grafted poly-vertex check:
|
if(vtx->grafted_poly!=NULL){
|
dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]);
|
if(dist<1.0 || dist>vesicle->dmax) {
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
}
|
|
// TODO: Maybe faster if checks only nucleus-neighboring cells
|
// Nucleus penetration check:
|
if(vesicle->R_nucleus>0.0){
|
if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
} else if(vesicle->R_nucleusX>0.0){
|
// fprintf(stderr,"DEBUG, (Rx, Ry,Rz)^2=(%f,%f,%f)\n",vesicle->R_nucleusX, vesicle->R_nucleusY, vesicle->R_nucleusZ);
|
if ((vtx->x*vtx->x)/vesicle->R_nucleusX + vtx->y*vtx->y/vesicle->R_nucleusY + (vtx->z*vtx->z)/vesicle->R_nucleusZ < 1.0){
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
|
}
|
|
//self avoidance check with distant vertices
|
cellidx=vertex_self_avoidance(vesicle, vtx);
|
//check occupation number
|
retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx);
|
|
if(retval==TS_FAIL){
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
|
|
//if all the tests are successful, then energy for vtx and neighbours is calculated
|
for(i=0;i<vtx->neigh_no;i++){
|
memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex));
|
}
|
|
if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch>0){
|
for(i=0;i<vtx->tristar_no;i++) dvol-=vtx->tristar[i]->volume;
|
}
|
|
if(vesicle->tape->constareaswitch==2){
|
for(i=0;i<vtx->tristar_no;i++) darea-=vtx->tristar[i]->area;
|
|
}
|
|
delta_energy=0;
|
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume in the beginning=%1.16e\n", vesicle->volume);
|
|
//update the normals of triangles that share bead i.
|
for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
|
oenergy=vtx->energy;
|
energy_vertex(vtx);
|
delta_energy=vtx->xk*(vtx->energy - oenergy);
|
//the same is done for neighbouring vertices
|
for(i=0;i<vtx->neigh_no;i++){
|
oenergy=vtx->neigh[i]->energy;
|
energy_vertex(vtx->neigh[i]);
|
delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy);
|
}
|
|
if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch >0){
|
for(i=0;i<vtx->tristar_no;i++) dvol+=vtx->tristar[i]->volume;
|
if(vesicle->pswitch==1) delta_energy-=vesicle->pressure*dvol;
|
};
|
|
if(vesicle->tape->constareaswitch==2){
|
/* check whether the darea is gt epsarea */
|
for(i=0;i<vtx->tristar_no;i++) darea+=vtx->tristar[i]->area;
|
if(fabs(vesicle->area+darea-A0)>epsarea){
|
//restore old state.
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
for(i=0;i<vtx->neigh_no;i++){
|
vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex));
|
}
|
for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
|
//fprintf(stderr,"fajlam!\n");
|
return TS_FAIL;
|
}
|
|
|
}
|
|
if(vesicle->tape->constvolswitch==2){
|
/*check whether the dvol is gt than epsvol */
|
//fprintf(stderr,"DVOL=%1.16e\n",dvol);
|
if(fabs(vesicle->volume+dvol-V0)>epsvol){
|
//restore old state.
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
for(i=0;i<vtx->neigh_no;i++){
|
vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex));
|
}
|
for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
|
//fprintf(stderr,"fajlam!\n");
|
return TS_FAIL;
|
}
|
|
} else
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume before=%1.16e\n", vesicle->volume);
|
if(vesicle->tape->constvolswitch == 1){
|
retval=constvolume(vesicle, vtx, -dvol, &delta_energy_cv, &constvol_vtx_moved,&constvol_vtx_backup);
|
if(retval==TS_FAIL){ // if we couldn't move the vertex to assure constant volume
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
for(i=0;i<vtx->neigh_no;i++){
|
vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex));
|
}
|
for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
|
// fprintf(stderr,"fajlam!\n");
|
return TS_FAIL;
|
}
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume after=%1.16e\n", vesicle->volume);
|
// fprintf(stderr,"Volume after-dvol=%1.16e\n", vesicle->volume-dvol);
|
// fprintf(stderr,"Denergy before=%e\n",delta_energy);
|
|
delta_energy+=delta_energy_cv;
|
// fprintf(stderr,"Denergy after=%e\n",delta_energy);
|
}
|
/* No poly-bond energy for now!
|
if(vtx->grafted_poly!=NULL){
|
delta_energy+=
|
(pow(sqrt(vtx_distance_sq(vtx, vtx->grafted_poly->vlist->vtx[0])-1),2)-
|
pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k;
|
}
|
*/
|
// fprintf(stderr, "DE=%f\n",delta_energy);
|
//MONTE CARLOOOOOOOO
|
if(delta_energy>=0){
|
#ifdef TS_DOUBLE_DOUBLE
|
if(exp(-delta_energy)< drand48())
|
#endif
|
#ifdef TS_DOUBLE_FLOAT
|
if(expf(-delta_energy)< (ts_float)drand48())
|
#endif
|
#ifdef TS_DOUBLE_LONGDOUBLE
|
if(expl(-delta_energy)< (ts_ldouble)drand48())
|
#endif
|
{
|
//not accepted, reverting changes
|
// fprintf(stderr,"MC failed\n");
|
vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex));
|
for(i=0;i<vtx->neigh_no;i++){
|
vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex));
|
}
|
|
//update the normals of triangles that share bead i.
|
for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
|
|
// fprintf(stderr, "before vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z);
|
if(vesicle->tape->constvolswitch == 1){
|
constvolumerestore(constvol_vtx_moved,constvol_vtx_backup);
|
}
|
// fprintf(stderr, "after vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z);
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume after fail=%1.16e\n", vesicle->volume);
|
return TS_FAIL;
|
}
|
}
|
//accepted
|
// fprintf(stderr,"MC accepted\n");
|
// oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]);
|
if(vtx->cell!=vesicle->clist->cell[cellidx]){
|
retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx);
|
// if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx);
|
if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx);
|
|
}
|
|
if(vesicle->tape->constvolswitch == 2){
|
vesicle->volume+=dvol;
|
} else
|
if(vesicle->tape->constvolswitch == 1){
|
constvolumeaccept(vesicle,constvol_vtx_moved,constvol_vtx_backup);
|
}
|
|
if(vesicle->tape->constareaswitch==2){
|
vesicle->area+=darea;
|
}
|
// if(oldcellidx);
|
//END MONTE CARLOOOOOOO
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume after success=%1.16e\n", vesicle->volume);
|
return TS_SUCCESS;
|
}
|
|
|
ts_bool single_poly_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){
|
ts_uint i;
|
ts_bool retval;
|
ts_uint cellidx;
|
// ts_double delta_energy;
|
ts_double costheta,sintheta,phi,r;
|
ts_double dist;
|
//This will hold all the information of vtx and its neighbours
|
ts_vertex backupvtx;
|
// ts_bond backupbond[2];
|
memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex));
|
|
//random move in a sphere with radius stepsize:
|
r=vesicle->stepsize*rn[0];
|
phi=rn[1]*2*M_PI;
|
costheta=2*rn[2]-1;
|
sintheta=sqrt(1-pow(costheta,2));
|
vtx->x=vtx->x+r*sintheta*cos(phi);
|
vtx->y=vtx->y+r*sintheta*sin(phi);
|
vtx->z=vtx->z+r*costheta;
|
|
|
//distance with neighbours check
|
for(i=0;i<vtx->neigh_no;i++){
|
dist=vtx_distance_sq(vtx,vtx->neigh[i]);
|
if(dist<1.0 || dist>vesicle->dmax) {
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
}
|
|
// Distance with grafted vesicle-vertex check:
|
if(vtx==poly->vlist->vtx[0]){
|
dist=vtx_distance_sq(vtx,poly->grafted_vtx);
|
if(dist<1.0 || dist>vesicle->dmax) {
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
}
|
|
|
//self avoidance check with distant vertices
|
cellidx=vertex_self_avoidance(vesicle, vtx);
|
//check occupation number
|
retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx);
|
|
if(retval==TS_FAIL){
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
|
|
//if all the tests are successful, then energy for vtx and neighbours is calculated
|
/* Energy ignored for now!
|
delta_energy=0;
|
for(i=0;i<vtx->bond_no;i++){
|
memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond));
|
|
vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2));
|
bond_energy(vtx->bond[i],poly);
|
delta_energy+= vtx->bond[i]->energy - backupbond[i].energy;
|
}
|
|
if(vtx==poly->vlist->vtx[0]){
|
delta_energy+=
|
(pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)-
|
pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k;
|
|
}
|
|
|
if(delta_energy>=0){
|
#ifdef TS_DOUBLE_DOUBLE
|
if(exp(-delta_energy)< drand48() )
|
#endif
|
#ifdef TS_DOUBLE_FLOAT
|
if(expf(-delta_energy)< (ts_float)drand48())
|
#endif
|
#ifdef TS_DOUBLE_LONGDOUBLE
|
if(expl(-delta_energy)< (ts_ldouble)drand48())
|
#endif
|
{
|
//not accepted, reverting changes
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
for(i=0;i<vtx->bond_no;i++){
|
vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond));
|
}
|
|
return TS_FAIL;
|
}
|
}
|
*/
|
|
// oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]);
|
if(vtx->cell!=vesicle->clist->cell[cellidx]){
|
retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx);
|
// if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx);
|
if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx);
|
}
|
// if(oldcellidx);
|
//END MONTE CARLOOOOOOO
|
return TS_SUCCESS;
|
}
|
|
|
|
|
ts_bool single_filament_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){
|
ts_uint i;
|
ts_bool retval;
|
ts_uint cellidx;
|
ts_double delta_energy;
|
ts_double costheta,sintheta,phi,r;
|
ts_double dist[2];
|
//This will hold all the information of vtx and its neighbours
|
ts_vertex backupvtx,backupneigh[2];
|
ts_bond backupbond[2];
|
|
//backup vertex:
|
memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex));
|
|
//random move in a sphere with radius stepsize:
|
r=vesicle->stepsize*rn[0];
|
phi=rn[1]*2*M_PI;
|
costheta=2*rn[2]-1;
|
sintheta=sqrt(1-pow(costheta,2));
|
vtx->x=vtx->x+r*sintheta*cos(phi);
|
vtx->y=vtx->y+r*sintheta*sin(phi);
|
vtx->z=vtx->z+r*costheta;
|
|
|
//distance with neighbours check
|
for(i=0;i<vtx->bond_no;i++){
|
dist[i]=vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2);
|
if(dist[i]<1.0 || dist[i]>vesicle->dmax) {
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
}
|
|
// TODO: Maybe faster if checks only nucleus-neighboring cells
|
// Nucleus penetration check:
|
if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
|
|
//self avoidance check with distant vertices
|
cellidx=vertex_self_avoidance(vesicle, vtx);
|
//check occupation number
|
retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx);
|
if(retval==TS_FAIL){
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
return TS_FAIL;
|
}
|
|
//backup bonds
|
for(i=0;i<vtx->bond_no;i++){
|
memcpy(&backupbond[i],vtx->bond[i], sizeof(ts_bond));
|
vtx->bond[i]->bond_length=sqrt(dist[i]);
|
bond_vector(vtx->bond[i]);
|
}
|
|
//backup neighboring vertices:
|
for(i=0;i<vtx->neigh_no;i++){
|
memcpy(&backupneigh[i],vtx->neigh[i], sizeof(ts_vertex));
|
}
|
|
//if all the tests are successful, then energy for vtx and neighbours is calculated
|
delta_energy=0;
|
|
if(vtx->bond_no == 2){
|
vtx->energy = -(vtx->bond[0]->x*vtx->bond[1]->x + vtx->bond[0]->y*vtx->bond[1]->y + vtx->bond[0]->z*vtx->bond[1]->z)/vtx->bond[0]->bond_length/vtx->bond[1]->bond_length;
|
delta_energy += vtx->energy - backupvtx.energy;
|
}
|
|
for(i=0;i<vtx->neigh_no;i++){
|
if(vtx->neigh[i]->bond_no == 2){
|
vtx->neigh[i]->energy = -(vtx->neigh[i]->bond[0]->x*vtx->neigh[i]->bond[1]->x + vtx->neigh[i]->bond[0]->y*vtx->neigh[i]->bond[1]->y + vtx->neigh[i]->bond[0]->z*vtx->neigh[i]->bond[1]->z)/vtx->neigh[i]->bond[0]->bond_length/vtx->neigh[i]->bond[1]->bond_length;
|
delta_energy += vtx->neigh[i]->energy - backupneigh[i].energy;
|
}
|
}
|
|
// poly->k is filament persistence length (in units l_min)
|
delta_energy *= poly->k;
|
|
if(delta_energy>=0){
|
#ifdef TS_DOUBLE_DOUBLE
|
if(exp(-delta_energy)< drand48() )
|
#endif
|
#ifdef TS_DOUBLE_FLOAT
|
if(expf(-delta_energy)< (ts_float)drand48())
|
#endif
|
#ifdef TS_DOUBLE_LONGDOUBLE
|
if(expl(-delta_energy)< (ts_ldouble)drand48())
|
#endif
|
{
|
//not accepted, reverting changes
|
vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex));
|
for(i=0;i<vtx->neigh_no;i++){
|
memcpy(vtx->neigh[i],&backupneigh[i],sizeof(ts_vertex));
|
}
|
for(i=0;i<vtx->bond_no;i++){
|
vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond));
|
}
|
|
return TS_FAIL;
|
}
|
}
|
|
|
// oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]);
|
if(vtx->cell!=vesicle->clist->cell[cellidx]){
|
retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx);
|
// if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx);
|
if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx);
|
}
|
// if(oldcellidx);
|
//END MONTE CARLOOOOOOO
|
return TS_SUCCESS;
|
}
|