Trisurf Monte Carlo simulator
Samo Penic
2014-04-17 e9c87efeb9235748e8d19a3f5a067ec442d8a500
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
//#include "io.h"
#include "general.h"
#include "timestep.h"
#include "vertexmove.h"
#include "bondflip.h"
#include "frame.h"
#include "io.h"
#include "stats.h"
#include "sh.h"
#include "vesicle.h"
 
ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){
    ts_uint i, j,k;
    ts_double r0;
    ts_double l1,l2,l3,volume=0.0,area=0.0,vmsr,bfsr, vmsrt, bfsrt;
    ts_ulong epochtime;
    FILE *fd1;
//     char filename[255];
    FILE *fd=fopen("statistics.csv","w");
    if(fd==NULL){
        fatal("Cannot open statistics.csv file for writing",1);
    }
    fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3\n");
    centermass(vesicle);
    cell_occupation(vesicle);
    if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps);
    for(i=start_iteration;i<inititer+iterations;i++){
        vmsr=0.0;
        bfsr=0.0;
        for(j=0;j<mcsweeps;j++){
            single_timestep(vesicle, &vmsrt, &bfsrt);
            vmsr+=vmsrt;
            bfsr+=bfsrt;
        }
        vmsr/=(ts_double)mcsweeps;
        bfsr/=(ts_double)mcsweeps;
        centermass(vesicle);
        cell_occupation(vesicle);
        ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps);
            dump_state(vesicle,i);
        if(i>=inititer){
            write_vertex_xml_file(vesicle,i-inititer);
            write_master_xml_file("test.pvd");
            epochtime=get_epoch();            
            gyration_eigen(vesicle, &l1, &l2, &l3);
            vesicle_volume(vesicle); //calculates just volume. Area is not added to ts_vesicle yet!
            get_area_volume(vesicle, &area,&volume); //that's why I must recalculate area (and volume for no particular reason).
            r0=getR0(vesicle);
            if(vesicle->sphHarmonics!=NULL){
                preparationSh(vesicle,r0);
                calculateYlmi(vesicle);
                calculateUlm(vesicle);
                storeUlm2(vesicle);
                saveAvgUlm2(vesicle);
                fd1=fopen("state.dat","w");
                fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle));
                for(k=0;k<vesicle->vlist->n;k++){
                    fprintf(fd1,"%e %e %e %e %e\n",
                        vesicle->vlist->vtx[k]->x,
                        vesicle->vlist->vtx[k]->y,
                        vesicle->vlist->vtx[k]->z,
                        vesicle->vlist->vtx[k]->solAngle,
                        vesicle->vlist->vtx[k]->relR
                    );
                }
                fclose(fd1);
            }
 
            fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,volume, area,l1,l2,l3);
            fflush(fd);    
        //    sprintf(filename,"timestep-%05d.pov",i-inititer);
        //    write_pov_file(vesicle,filename);
        }
    }
    fclose(fd);
    return TS_SUCCESS;
}
 
ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){
    ts_bool retval;
    ts_double rnvec[3];
    ts_uint i,j,b;
    ts_uint vmsrcnt=0;
    for(i=0;i<vesicle->vlist->n;i++){
        rnvec[0]=drand48();
        rnvec[1]=drand48();
        rnvec[2]=drand48();
        retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec);
    if(retval==TS_SUCCESS) vmsrcnt++;        
    }
 
    ts_int bfsrcnt=0;
    for(i=0;i<3*vesicle->vlist->n;i++){
    b=rand() % vesicle->blist->n;
        //find a bond and return a pointer to a bond...
        //call single_bondflip_timestep...
        retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec);
    if(retval==TS_SUCCESS) bfsrcnt++;        
    }
 
    for(i=0;i<vesicle->poly_list->n;i++){
        for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){
            rnvec[0]=drand48();
            rnvec[1]=drand48();
            rnvec[2]=drand48();
            retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec);    
        }
    }
 
 
    for(i=0;i<vesicle->filament_list->n;i++){
        for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){
            rnvec[0]=drand48();
            rnvec[1]=drand48();
            rnvec[2]=drand48();
            retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec);    
        }
    }
 
 
//    printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0);
    *vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n;
    *bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0;
    return TS_SUCCESS;
}