Trisurf Monte Carlo simulator
Samo Penic
2013-11-30 bc4e1ee61725fdf7ec81a9583b7fa545f847e07b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include<stdlib.h>
#include "general.h"
#include "energy.h"
#include "vertex.h"
#include<math.h>
#include<stdio.h>
ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){
 
    ts_uint i;
    
    ts_vertex_list *vlist=vesicle->vlist;
    ts_vertex **vtx=vlist->vtx;
 
    for(i=0;i<vlist->n;i++){
        energy_vertex(vtx[i]);
        
    }
 
    return TS_SUCCESS;
}
 
 
inline ts_bool energy_vertex(ts_vertex *vtx){
//    ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value!
//    ts_triangle *tristar=vtx->tristar-1;
    //ts_vertex_data *data=vtx->data;
    ts_uint jj;
    ts_uint jjp,jjm;
    ts_vertex *j,*jp, *jm;
    ts_triangle *jt;
    ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0;
    ts_double x1,x2,x3,ctp,ctm,tot,xlen;
    ts_double h,ht;
    for(jj=1; jj<=vtx->neigh->n;jj++){
        jjp=jj+1;
        if(jjp>vtx->neigh->n) jjp=1;
        jjm=jj-1;
        if(jjm<1) jjm=vtx->neigh->n;
        j=vtx->neigh->vtx[jj-1];
        jp=vtx->neigh->vtx[jjp-1];
        jm=vtx->neigh->vtx[jjm-1];
//        printf("tristar_no=%u, neigh_no=%u, jj=%u\n",data->tristar_no,data->neigh_no,jj);
        jt=vtx->tristar[jj-1];
        x1=vtx_distance_sq(vtx,jp); //shouldn't be zero!
        x2=vtx_distance_sq(j,jp); // shouldn't be zero!
        x3=(j->x-jp->x)*(vtx->x-jp->x)+
           (j->y-jp->y)*(vtx->y-jp->y)+
           (j->z-jp->z)*(vtx->z-jp->z);
        
#ifdef TS_DOUBLE_DOUBLE
        ctp=x3/sqrt(x1*x2-x3*x3);
#endif
#ifdef TS_DOUBLE_FLOAT
        ctp=x3/sqrtf(x1*x2-x3*x3);
#endif
#ifdef TS_DOUBLE_LONGDOUBLE
        ctp=x3/sqrtl(x1*x2-x3*x3);
#endif
        x1=vtx_distance_sq(vtx,jm);
        x2=vtx_distance_sq(j,jm);
        x3=(j->x-jm->x)*(vtx->x-jm->x)+
           (j->y-jm->y)*(vtx->y-jm->y)+
           (j->z-jm->z)*(vtx->z-jm->z);
#ifdef TS_DOUBLE_DOUBLE
        ctm=x3/sqrt(x1*x2-x3*x3);
#endif
#ifdef TS_DOUBLE_FLOAT
        ctm=x3/sqrtf(x1*x2-x3*x3);
#endif
#ifdef TS_DOUBLE_LONGDOUBLE
        ctm=x3/sqrtl(x1*x2-x3*x3);
#endif
        tot=ctp+ctm;
        tot=0.5*tot;
 
        xlen=vtx_distance_sq(j,vtx);
/*
#ifdef  TS_DOUBLE_DOUBLE 
        vtx->bond[jj-1]->bond_length=sqrt(xlen); 
#endif
#ifdef  TS_DOUBLE_FLOAT
        vtx->bond[jj-1]->bond_length=sqrtf(xlen); 
#endif
#ifdef  TS_DOUBLE_LONGDOUBLE 
        vtx->bond[jj-1]->bond_length=sqrtl(xlen); 
#endif
 
        vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length;
*/
        s+=tot*xlen;
        xh+=tot*(j->x - vtx->x);
        yh+=tot*(j->y - vtx->y);
        zh+=tot*(j->z - vtx->z);
        txn+=jt->xnorm;
        tyn+=jt->ynorm;
        tzn+=jt->znorm;
    }
    
    h=xh*xh+yh*yh+zh*zh;
    ht=txn*xh+tyn*yh + tzn*zh;
    s=s/4.0; 
#ifdef TS_DOUBLE_DOUBLE
    if(ht>=0.0) {
        vtx->curvature=sqrt(h);
    } else {
        vtx->curvature=-sqrt(h);
    }
#endif
#ifdef TS_DOUBLE_FLOAT
    if(ht>=0.0) {
        vtx->curvature=sqrtf(h);
    } else {
        vtx->curvature=-sqrtf(h);
    }
#endif
#ifdef TS_DOUBLE_LONGDOUBLE
    if(ht>=0.0) {
        vtx->curvature=sqrtl(h);
    } else {
        vtx->curvature=-sqrtl(h);
    }
#endif
// What is vtx->c?????????????? Here it is 0!
// c is forced curvature energy for each vertex. Should be set to zero for
// normal circumstances.
    vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c);
 
    return TS_SUCCESS;
}