1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
| /* vim: set ts=4 sts=4 sw=4 noet : */
| #include "general.h"
| #include "vertex.h"
| #include "initial_distribution.h"
| #include "io.h"
| #include "vesicle.h"
| #include "sh.h"
| #include "frame.c"
| #include <math.h>
| #include <stdlib.h>
| int main(int argc, char *argv[]){
|
| ts_fprintf(stdout,"SHdiscover was called with %d coefficients!\n",argc-1);
| ts_uint n,i,j,l;
| ts_int m;
| ts_double fi,theta,r,Y;
| ts_vesicle *vesicle=initial_distribution_dipyramid(17,60,60,60,0.15);
| ts_vertex_list *vlist=vesicle->vlist;
| centermass(vesicle);
| ts_fprintf(stdout,"Vesicle has a CenterMass in %f,%f,%f\n",vesicle->cm[0],vesicle->cm[1], vesicle->cm[2]);
|
| n=vlist->n;
|
| ts_fprintf(stdout,"Tests\n");
| ts_fprintf(stdout,"P(0,0,0.5)=%f (%f)\n",plgndr(0,0,0.5),1.0);
| ts_fprintf(stdout,"P(1,0,0.5)=%f (%f)\n",plgndr(1,0,0.5),0.5);
| ts_fprintf(stdout,"P(2,0,0.5)=%f (%f)\n",plgndr(2,0,0.5),0.5*(3*0.5*0.5-1));
| ts_fprintf(stdout,"P(2,2,0.5)=%f (ni to:%f)\n",plgndr(2,2,0.5),0.5*(3*0.5*0.5-1));
|
| ts_fprintf(stdout,"Y(0,0,pi/6,pi/4)=%f (%f)\n",shY(0,0,M_PI/6,M_PI/4),sqrt(1/(4*M_PI)));
| ts_fprintf(stdout,"Y(1,0,pi/6,pi/4)=%f (%f)\n",shY(1,0,M_PI/6,M_PI/4),sqrt(3/(4*M_PI))*cos(M_PI/6));
| ts_fprintf(stdout,"Y(1,0,4*pi/6,6*pi/4)=%f (%f)\n",shY(1,0,4*M_PI/6,6*M_PI/4),sqrt(3/(4*M_PI))*cos(4*M_PI/6));
| ts_fprintf(stdout,"Y(1,1,pi/6,pi/4)=%f (%f)\n",shY(1,1,M_PI/6,M_PI/4),-sqrt(3/(8*M_PI))*sin(M_PI/6)*cos(M_PI/4));
| ts_fprintf(stdout,"Y(2,0,pi/6,pi/4)=%f (%f)\n",shY(2,0,M_PI/6,M_PI/4),sqrt(5/(4*M_PI))*(3.0/2.0*cos(M_PI/6)*cos(M_PI/6)-1.0/2.0));
| ts_fprintf(stdout,"Y(2,-2,pi/6,pi/4)=%f (0)\n",shY(2,-2,M_PI/6,M_PI/4));
| ts_fprintf(stdout,"Y(2,2,pi/6,pi/3)=%f (%f)\n",shY(2,2,M_PI/6,M_PI/3), sqrt(15.0/(32.0*M_PI))*sin(M_PI/6)*sin(M_PI/6)*cos(2*M_PI/3));
|
| for(j=1;j<argc;j++){
| l=(int)sqrt(j-1); /* determine l from dataline */
| m=j-1-l*(l+1); /* determine m from dataline */
| ts_fprintf(stdout,"l=%d, m=%d, u=%s\n",l,m,argv[j]);
| }
|
| /*we calculate new position of each vertex of vesicle */
| for(i=0;i<n;i++){
| fi=atan2(vlist->vtx[i]->y, vlist->vtx[i]->x);
| /* theta=atan2(
| sqrt(vlist->vtx[i]->data->x*vlist->vtx[i]->data->x +
| vlist->vtx[i]->data->y*vlist->vtx[i]->data->y),
| vlist->vtx[i]->data->z
| ); */
| theta=acos(
| vlist->vtx[i]->z /
| sqrt(vlist->vtx[i]->x*vlist->vtx[i]->x +
| vlist->vtx[i]->y*vlist->vtx[i]->y+
| vlist->vtx[i]->z*vlist->vtx[i]->z)
|
| );
|
|
|
| r=0.0;
| for(j=1;j<argc;j++){
| l=(int)sqrt(j-1); /* determine l from dataline */
| m=j-1-l*(l+1); /* determine m from dataline */
| Y=shY(l,m,theta,fi);
| r+=fabs(atof(argv[j])*Y);
| /*ts_fprintf(stdout,"l=%d, m=%d, u=%s\n",l,m,argv[j]);*/
| }
|
| vlist->vtx[i]->z=fabs(r)*cos(theta);
| vlist->vtx[i]->x=fabs(r)*sin(theta)*cos(fi);
| vlist->vtx[i]->y=fabs(r)*sin(theta)*sin(fi);
| }
|
| write_vertex_xml_file(vesicle,0);
| write_master_xml_file("test.pvd");
|
|
| vesicle_free(vesicle);
| return 0;
| }
|
|