/* vim: set ts=4 sts=4 sw=4 noet : */
|
#include<stdlib.h>
|
#include<stdio.h>
|
#include<math.h>
|
//#include "io.h"
|
#include "general.h"
|
#include "timestep.h"
|
#include "vertexmove.h"
|
#include "bondflip.h"
|
#include "frame.h"
|
#include "io.h"
|
#include "stats.h"
|
#include "sh.h"
|
#include "shcomplex.h"
|
#include "vesicle.h"
|
#include<gsl/gsl_complex.h>
|
#include<gsl/gsl_complex_math.h>
|
#include<string.h>
|
|
ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){
|
ts_uint i, j,k,l,m;
|
ts_double r0,kc1=0,kc2=0,kc3=0,kc4=0;
|
ts_double l1,l2,l3,vmsr,bfsr, vmsrt, bfsrt;
|
ts_ulong epochtime;
|
FILE *fd1,*fd2=NULL;
|
char filename[10000];
|
strcpy(filename,command_line_args.path);
|
strcat(filename,"statistics.csv");
|
FILE *fd=fopen(filename,"w");
|
if(fd==NULL){
|
fatal("Cannot open statistics.csv file for writing",1);
|
}
|
fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n");
|
|
if(vesicle->sphHarmonics!=NULL){
|
strcpy(filename,command_line_args.path);
|
strcat(filename,"ulm2.csv");
|
fd2=fopen(filename,"w");
|
if(fd2==NULL){
|
fatal("Cannot open ulm2.csv file for writing",1);
|
}
|
fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n");
|
|
}
|
|
/* RANDOM SEED SET BY CURRENT TIME */
|
epochtime=get_epoch();
|
srand48(epochtime);
|
|
centermass(vesicle);
|
cell_occupation(vesicle);
|
vesicle_volume(vesicle); //needed for constant volume at this moment
|
vesicle_area(vesicle); //needed for constant area at this moment
|
V0=vesicle->volume;
|
A0=vesicle->area;
|
epsvol=4.0*sqrt(2.0*M_PI)/pow(3.0,3.0/4.0)*V0/pow(vesicle->tlist->n,3.0/2.0);
|
epsarea=A0/(ts_double)vesicle->tlist->n;
|
// fprintf(stderr, "DVol=%1.16f (%1.16f), V0=%1.16f\n", epsvol,0.003e-2*V0,V0);
|
if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps);
|
for(i=start_iteration;i<inititer+iterations;i++){
|
vmsr=0.0;
|
bfsr=0.0;
|
/* vesicle_volume(vesicle);
|
fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); */
|
for(j=0;j<mcsweeps;j++){
|
single_timestep(vesicle, &vmsrt, &bfsrt);
|
vmsr+=vmsrt;
|
bfsr+=bfsrt;
|
}
|
/*
|
vesicle_volume(vesicle);
|
fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); */
|
vmsr/=(ts_double)mcsweeps;
|
bfsr/=(ts_double)mcsweeps;
|
centermass(vesicle);
|
cell_occupation(vesicle);
|
ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps);
|
dump_state(vesicle,i);
|
if(i>=inititer){
|
write_vertex_xml_file(vesicle,i-inititer);
|
write_master_xml_file(command_line_args.output_fullfilename);
|
epochtime=get_epoch();
|
gyration_eigen(vesicle, &l1, &l2, &l3);
|
vesicle_volume(vesicle); //calculates just volume.
|
vesicle_area(vesicle); //calculates area.
|
r0=getR0(vesicle);
|
if(vesicle->sphHarmonics!=NULL){
|
preparationSh(vesicle,r0);
|
//calculateYlmi(vesicle);
|
calculateUlmComplex(vesicle);
|
storeUlmComplex2(vesicle);
|
saveAvgUlm2(vesicle);
|
kc1=calculateKc(vesicle, 2,9);
|
kc2=calculateKc(vesicle, 6,9);
|
kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l);
|
kc4=calculateKc(vesicle, 3,6);
|
strcpy(filename,command_line_args.path);
|
strcat(filename,"state.dat");
|
fd1=fopen(filename,"w");
|
fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle));
|
for(k=0;k<vesicle->vlist->n;k++){
|
fprintf(fd1,"%e %e %e %e %e\n",
|
vesicle->vlist->vtx[k]->x,
|
vesicle->vlist->vtx[k]->y,
|
vesicle->vlist->vtx[k]->z,
|
vesicle->vlist->vtx[k]->solAngle,
|
vesicle->vlist->vtx[k]->relR
|
);
|
}
|
fclose(fd1);
|
|
fprintf(fd2,"%u ", i);
|
for(l=0;l<vesicle->sphHarmonics->l;l++){
|
for(m=l;m<2*l+1;m++){
|
fprintf(fd2,"%e ", gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m]) );
|
}
|
}
|
fprintf(fd2,"\n");
|
|
fflush(fd2);
|
|
}
|
|
fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,vesicle->volume, vesicle->area,l1,l2,l3,kc1, kc2, kc3,kc4);
|
|
fflush(fd);
|
// sprintf(filename,"timestep-%05d.pov",i-inititer);
|
// write_pov_file(vesicle,filename);
|
}
|
}
|
fclose(fd);
|
if(fd2!=NULL) fclose(fd2);
|
return TS_SUCCESS;
|
}
|
|
ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume);
|
ts_bool retval;
|
ts_double rnvec[3];
|
ts_uint i,j, b;
|
ts_uint vmsrcnt=0;
|
for(i=0;i<vesicle->vlist->n;i++){
|
rnvec[0]=drand48();
|
rnvec[1]=drand48();
|
rnvec[2]=drand48();
|
retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec);
|
if(retval==TS_SUCCESS) vmsrcnt++;
|
}
|
|
ts_int bfsrcnt=0;
|
for(i=0;i<3*vesicle->vlist->n;i++){
|
b=rand() % vesicle->blist->n;
|
//find a bond and return a pointer to a bond...
|
//call single_bondflip_timestep...
|
retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec);
|
// b++; retval=TS_FAIL;
|
if(retval==TS_SUCCESS) bfsrcnt++;
|
}
|
|
for(i=0;i<vesicle->poly_list->n;i++){
|
for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){
|
rnvec[0]=drand48();
|
rnvec[1]=drand48();
|
rnvec[2]=drand48();
|
retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec);
|
}
|
}
|
|
|
for(i=0;i<vesicle->filament_list->n;i++){
|
for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){
|
rnvec[0]=drand48();
|
rnvec[1]=drand48();
|
rnvec[2]=drand48();
|
retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec);
|
}
|
}
|
|
|
// printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0);
|
*vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n;
|
*bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0;
|
// vesicle_volume(vesicle);
|
// fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume);
|
return TS_SUCCESS;
|
}
|