Trisurf Monte Carlo simulator
mihaf
2014-03-21 402e8f59c31856000c303e2527f80917422760df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include"general.h"
#include"poly.h"
#include<stdlib.h>
#include"vertex.h"
#include"bond.h"
#include<math.h>
#include"energy.h"
 
ts_bool poly_assign_filament_xi(ts_vesicle *vesicle, ts_tape *tape){
    ts_uint i;
 
    for(i=0;i<vesicle->filament_list->n;i++){
     vesicle->filament_list->poly[i]->k = tape->xi;
        }
    
    return TS_SUCCESS;
}
 
 
ts_bool poly_assign_spring_const(ts_vesicle *vesicle){
    ts_uint i;
 
    for(i=0;i<vesicle->poly_list->n;i++){
     vesicle->poly_list->poly[i]->k = vesicle->spring_constant;
        }
    
    return TS_SUCCESS;
}
 
ts_poly    *init_poly(ts_uint n, ts_vertex *grafted_vtx){
    ts_poly    *poly=(ts_poly *)calloc(1,sizeof(ts_poly));
    poly->vlist = init_vertex_list(n);
    poly->blist = init_bond_list();
    if (grafted_vtx!=NULL){
        poly->grafted_vtx = grafted_vtx;
        grafted_vtx->grafted_poly = poly;
    }
 
    ts_uint i;
    for(i=0;i<n-1;i++){
        vtx_add_cneighbour(poly->blist, poly->vlist->vtx[i], poly->vlist->vtx[i+1]);
        vtx_add_neighbour(poly->vlist->vtx[i+1], poly->vlist->vtx[i]);
    }
 
    for(i=0;i<poly->blist->n;i++){
    poly->blist->bond[i]->bond_length=sqrt(vtx_distance_sq(poly->blist->bond[i]->vtx1,poly->blist->bond[i]->vtx2));
    bond_energy(poly->blist->bond[i],poly);
    }
 
    return poly;
}
 
 
ts_poly_list *init_poly_list(ts_uint n_poly, ts_uint n_mono, ts_vertex_list *vlist, ts_vesicle *vesicle){
    ts_poly_list *poly_list=(ts_poly_list *)calloc(1,sizeof(ts_poly_list));
    poly_list->poly    = (ts_poly **)calloc(n_poly,sizeof(ts_poly *));
    ts_uint i=0,j=0; //idx;
    ts_uint gvtxi;
    ts_double xnorm,ynorm,znorm,normlength;
    ts_double dphi,dh;
    ts_uint ji;
 
    // Grafting polymers:
    if (vlist!=NULL){
        if (n_poly > vlist->n){fatal("Number of polymers larger then numbero f vertices on a vesicle.",310);}
    
        while(i<n_poly){
            gvtxi = rand() % vlist->n;
            if (vlist->vtx[gvtxi]->grafted_poly == NULL){
            poly_list->poly[i] = init_poly(n_mono, vlist->vtx[gvtxi]);
            i++;
            }
        }
    }
    else
    {
        for(i=0;i<n_poly;i++){
            poly_list->poly[i] = init_poly(n_mono, NULL);
        }
    }
 
    poly_list->n = n_poly;
 
    if (vlist!=NULL){
    /* Make straight grafted poylmers normal to membrane (polymer brush). Dist. between poly vertices put to 1*/
        for (i=0;i<poly_list->n;i++){
    
            xnorm=0.0;
            ynorm=0.0;
            znorm=0.0;
            for (j=0;j<poly_list->poly[i]->grafted_vtx->tristar_no;j++){
                xnorm-=poly_list->poly[i]->grafted_vtx->tristar[j]->xnorm;
                ynorm-=poly_list->poly[i]->grafted_vtx->tristar[j]->ynorm;
                znorm-=poly_list->poly[i]->grafted_vtx->tristar[j]->znorm;    
            }
            normlength=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm);
            xnorm=xnorm/normlength;
            ynorm=ynorm/normlength;
            znorm=znorm/normlength;
 
            for (j=0;j<poly_list->poly[i]->vlist->n;j++){
                poly_list->poly[i]->vlist->vtx[j]->x = poly_list->poly[i]->grafted_vtx->x + xnorm*(ts_double)(j+1);
                poly_list->poly[i]->vlist->vtx[j]->y = poly_list->poly[i]->grafted_vtx->y + ynorm*(ts_double)(j+1);
                poly_list->poly[i]->vlist->vtx[j]->z = poly_list->poly[i]->grafted_vtx->z + znorm*(ts_double)(j+1);
            }
        }
    }
    else
    {
    /* Make filaments inside the vesicle. Helix with radius... Dist. between poly vertices put to 1*/
        dphi = 2.0*asin(1.0/2.0/vesicle->R_nucleus)*1.001;
        dh = dphi/2.0/M_PI*1.001;
        for(i=0;i<poly_list->n;i++){
            for (j=0;j<poly_list->poly[i]->vlist->n;j++){
                ji = j + i*poly_list->poly[i]->vlist->n;
                poly_list->poly[i]->vlist->vtx[j]->x = vesicle->R_nucleus*cos(ji*dphi);
                poly_list->poly[i]->vlist->vtx[j]->y = vesicle->R_nucleus*sin(ji*dphi);
                poly_list->poly[i]->vlist->vtx[j]->z = ji*dh - (dh*poly_list->n*poly_list->poly[i]->vlist->n/2.0);
            }
        }
    }
 
        //index correction for polymeres. Important, since each vtx has to have unique id
/*    idx=vlist->n;
    for(i=0;i<n_poly;i++){
        for(j=0;j<n_mono;j++,idx++){
 
            poly_list->poly[i]->vlist->vtx[j]->idx=idx;
 
        }
    }
*/
 
    return poly_list;
}
 
 
ts_bool poly_free(ts_poly *poly){
 
    if (poly->grafted_vtx!=NULL){
        poly->grafted_vtx->grafted_poly=NULL;
    }
    vtx_list_free(poly->vlist);
    bond_list_free(poly->blist);
    free(poly);
 
    return TS_SUCCESS;
}
 
ts_bool poly_list_free(ts_poly_list *poly_list){
    ts_uint i;
 
    for(i=0;i<poly_list->n;i++){
        poly_free(poly_list->poly[i]);
    }
    free(poly_list->poly);
    free(poly_list);
    
    return TS_SUCCESS;
}