Python wrapper for running instances of trisurf-ng
Samo Penic
2017-02-21 c1504d4d71afcd0764bfbb51578ebed556f36aec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from . import trisurf
 
 
def analysis(analysis_name='unnamed_analysis'):
    """Decorator for adding the analysis functions to function lists"""
    def analysis_decorator(analysis_function):
        trisurf._analysis_list[analysis_name]=analysis_function
        def wrapper(*args, **kwargs):
            analysis_function(*args,**kwargs)
        return wrapper
    return analysis_decorator
 
 
@analysis('demo')
def demo(run, **kwargs):
    host=kwargs.get('host', None)
    print("Demo analysis")
    print("Analysis on host "+host['name']+" for run "+run.Dir.fullpath()+" completed")
    print("here comes info on the run variable:")
    print(run)
    print("here comes info on the host variable:")
    print(host)
    print("here comes info on the args variable:")
    print(kwargs.get('args',None))
 
 
# can be wrapped to specify scalar_field)
@analysis('plotrunningavginteractive')
def plotrunningavginteractive(run, scalar_field='vertices_idx', **kwargs):
    import matplotlib.pyplot as plt
    from trisurf import VTKRendering as vtk
    import math
    from multiprocessing import Process
    table=trisurf.Statistics(run.Dir.fullpath(),filename='data_tspoststat.csv').getTable()
    def running_avg(col):
        import numpy as np
        avg=[]    
        for i in range(0,len(col)):
            avg.append(np.average(col[:-i]))
        return avg
    def spawned_viewer(n):
        vtk.Renderer(kwargs.get('args', None),kwargs.get('host',None),run, timestep=n,scalar_field=scalar_field)
 
    fig=plt.figure(1)
    ra=running_avg(table['hbar'])
    l=len(table['hbar'])
    plt.plot(ra)
    plt.title('Running average')
    plt.ylabel('1/n sum_i=niter^n(hbar_i)')
    plt.xlabel('n')
    def onclick(event):
        #print('button=%d, x=%d, y=%d, xdata=%f, ydata=%f' % (event.button, event.x, event.y, event.xdata, event.ydata))
        p=Process(target=spawned_viewer, args=(l-math.floor(event.xdata)-1,))
        p.start()
    cid = fig.canvas.mpl_connect('button_press_event', onclick)
    plt.show()
    plt.close(1)
 
 
# -------------------------------
# these functions should be wrapped
# -------------------------------
@analysis('plotColumnFromPostProcess')
def plotColumnFromPostProcess(run, filename='data_tspoststat.csv', column='hbar', **kwargs):
    import matplotlib.pyplot as plt
 
    def smooth(y, box_pts):
        import numpy as np
        box = np.ones(box_pts)/box_pts
        y_smooth = np.convolve(y, box, mode='same')
        return y_smooth
    table=trisurf.Statistics(run.Dir.fullpath(),filename=filename).getTable()
    plt.plot(table[column], '.')
    plt.title(run.Dir.fullpath())
    plt.xlabel('Iteration')
    plt.ylabel(column)
    smooth_window=10
    smoothed=smooth(table[column],smooth_window)
    plt.plot(tuple(range(int(smooth_window/2),len(smoothed)-int(smooth_window/2))),smoothed[int(smooth_window/2):-int(smooth_window/2)])
    plt.show()
    print
    #if return False or no return statement, the analysis will continue with next running instance in the list. if return True, the analysis will stop after this run.
    return False