from aoi_ocr.Ocr import Paper
|
from sklearn.externals import joblib
|
import pkg_resources
|
|
path = "/filename.joblib" # always use slash
|
filepath = pkg_resources.resource_filename("aoi_ocr", path)
|
|
from glob import glob
|
|
settings = {"sid_mask": "11x0xxxx", "answer_threshold": 0.25}
|
classifier = joblib.load(filepath)
|
|
# p = Paper(filename="testpage300dpi_scan1.png")
|
# p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings={"sid_mask": "11xx0xxx", "answer_threshold": 0.25})
|
# p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings)
|
# p = Paper(filename="processed_scans/20151111080408825_0001.tif",sid_classifier=classifier,settings=settings,)
|
# p=Paper(filename='processed_scans/20151028145444607_0028.tif', sid_classifier=classifier, settings=settings)
|
pa = [
|
"processed_scans/20141016095134535_0006.tif",
|
"processed_scans/20141016095134535_0028.tif",
|
"processed_scans/20141016095134535_0028.tif",
|
"processed_scans/20141016095134535_0037.tif",
|
"processed_scans/20141021095744144_0005.tif",
|
"processed_scans/20141021095744144_0009.tif",
|
"processed_scans/20141028095553745_0018.tif",
|
"processed_scans/20151013180545275_0011.tif",
|
"processed_scans/20160408140801098_0004.tif",
|
"processed_scans/20160510075445995_0026.tif",
|
]
|
# p=Paper(filename=pa[9], sid_classifier=classifier, settings=settings)
|
#p = Paper(filename="test3011/sizif000.tif", sid_classifier=classifier, settings=settings)
|
p = Paper(filename="sizif000-plus1deg.tif", sid_classifier=classifier, settings=settings)
|
|
# print(p.QRData)
|
# print(p.errors)
|
|
# print(p.getSkewAngle())
|
# print(p.locateUpMarkers())%%
|
# print(p.locateRightMarkers())
|
# print(p.answerMatrix)
|
# p.get_enhanced_sid()
|
|
|
print(p.get_paper_ocr_data())
|
|
exit(0)
|
filelist = glob("test3011/*.tif")
|
wrong_sid = 0
|
total = 0
|
for f in sorted(filelist):
|
print("processing: {}".format(f))
|
p = Paper(
|
filename=f, sid_classifier=classifier, settings=settings
|
).get_paper_ocr_data()
|
print(f, p)
|
if p["page_no"] == 0:
|
total += 1
|
if len(p["errors"]) != 0:
|
wrong_sid += 1
|
if total % 10 == 0:
|
print("Total:{}, wrong SID: {}".format(total, wrong_sid))
|
|
print("Total:{}, wrong SID: {}".format(total, wrong_sid))
|