commit | author | age
|
7f6076
|
1 |
/* vim: set ts=4 sts=4 sw=4 noet : */ |
d7639a
|
2 |
#include<stdlib.h> |
SP |
3 |
#include "general.h" |
|
4 |
#include "energy.h" |
|
5 |
#include "vertex.h" |
|
6 |
#include<math.h> |
|
7 |
#include<stdio.h> |
a00f10
|
8 |
|
SP |
9 |
|
|
10 |
/** @brief Wrapper that calculates energy of every vertex in vesicle |
|
11 |
* |
|
12 |
* Function calculated energy of every vertex in vesicle. It can be used in |
|
13 |
* initialization procedure or in recalculation of the energy after non-MCsweep * operations. However, when random move of vertex or flip of random bond occur * call to this function is not necessary nor recommended. |
|
14 |
* @param *vesicle is a pointer to vesicle. |
|
15 |
* @returns TS_SUCCESS on success. |
|
16 |
*/ |
d7639a
|
17 |
ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){ |
SP |
18 |
|
f74313
|
19 |
ts_uint i; |
d7639a
|
20 |
|
f74313
|
21 |
ts_vertex_list *vlist=vesicle->vlist; |
SP |
22 |
ts_vertex **vtx=vlist->vtx; |
d7639a
|
23 |
|
SP |
24 |
for(i=0;i<vlist->n;i++){ |
f74313
|
25 |
energy_vertex(vtx[i]); |
b01cc1
|
26 |
|
d7639a
|
27 |
} |
SP |
28 |
|
|
29 |
return TS_SUCCESS; |
|
30 |
} |
|
31 |
|
a00f10
|
32 |
/** @brief Calculate energy of a bond (in models where energy is bond related) |
SP |
33 |
* |
|
34 |
* This function is experimental and currently only used in polymeres calculation (PEGs or polymeres inside the vesicle). |
|
35 |
* |
|
36 |
* @param *bond is a pointer to a bond between two vertices in polymere |
|
37 |
* @param *poly is a pointer to polymere in which we calculate te energy of the bond |
|
38 |
* @returns TS_SUCCESS on successful calculation |
|
39 |
*/ |
fedf2b
|
40 |
inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){ |
304510
|
41 |
//TODO: This value to be changed and implemented in data structure: |
M |
42 |
ts_double d_relaxed=1.0; |
|
43 |
bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2); |
fedf2b
|
44 |
return TS_SUCCESS; |
M |
45 |
}; |
|
46 |
|
a00f10
|
47 |
/** @brief Calculation of energy of the vertex |
SP |
48 |
* |
|
49 |
* Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. |
|
50 |
* Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. |
|
51 |
* |
854cb6
|
52 |
\begin{tikzpicture}{ |
a00f10
|
53 |
\coordinate[label=below:$i$] (i) at (2,0); |
SP |
54 |
\coordinate[label=left:$j_m$] (jm) at (0,3.7); |
|
55 |
\coordinate[label=above:$j$] (j) at (2.5,6.4); |
|
56 |
\coordinate[label=right:$j_p$] (jp) at (4,2.7); |
d7639a
|
57 |
|
a00f10
|
58 |
\draw (i) -- (jm) -- (j) -- (jp) -- (i) -- (j); |
SP |
59 |
|
|
60 |
\begin{scope} |
|
61 |
\path[clip] (jm)--(i)--(j); |
|
62 |
\draw (jm) circle (0.8); |
|
63 |
\node[right] at (jm) {$\varphi_m$}; |
|
64 |
\end{scope} |
|
65 |
|
|
66 |
\begin{scope} |
|
67 |
\path[clip] (jp)--(i)--(j); |
|
68 |
\draw (jp) circle (0.8); |
|
69 |
\node[left] at (jp) {$\varphi_p$}; |
|
70 |
\end{scope} |
|
71 |
|
|
72 |
%%vertices |
|
73 |
\draw [fill=gray] (i) circle (0.1); |
|
74 |
\draw [fill=white] (j) circle (0.1); |
|
75 |
\draw [fill=white] (jp) circle (0.1); |
|
76 |
\draw [fill=white] (jm) circle (0.1); |
|
77 |
%\node[draw,circle,fill=white] at (i) {}; |
854cb6
|
78 |
\end{tikzpicture} |
a00f10
|
79 |
|
SP |
80 |
* The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). |
|
81 |
* |
|
82 |
* From the curvature the enery is calculated by equation \f$E=\frac{1}{2}\mathbf{h}\cdot\mathbf{h}\f$. |
|
83 |
* @param *vtx is a pointer to vertex at which we want to calculate the energy |
|
84 |
* @returns TS_SUCCESS on successful calculation. |
|
85 |
*/ |
d7639a
|
86 |
inline ts_bool energy_vertex(ts_vertex *vtx){ |
SP |
87 |
ts_uint jj; |
|
88 |
ts_uint jjp,jjm; |
|
89 |
ts_vertex *j,*jp, *jm; |
|
90 |
ts_triangle *jt; |
a63f17
|
91 |
ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0; |
d7639a
|
92 |
ts_double x1,x2,x3,ctp,ctm,tot,xlen; |
SP |
93 |
ts_double h,ht; |
8f6a69
|
94 |
for(jj=1; jj<=vtx->neigh_no;jj++){ |
d7639a
|
95 |
jjp=jj+1; |
8f6a69
|
96 |
if(jjp>vtx->neigh_no) jjp=1; |
d7639a
|
97 |
jjm=jj-1; |
8f6a69
|
98 |
if(jjm<1) jjm=vtx->neigh_no; |
SP |
99 |
j=vtx->neigh[jj-1]; |
|
100 |
jp=vtx->neigh[jjp-1]; |
|
101 |
jm=vtx->neigh[jjm-1]; |
|
102 |
jt=vtx->tristar[jj-1]; |
f74313
|
103 |
x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! |
SP |
104 |
x2=vtx_distance_sq(j,jp); // shouldn't be zero! |
8f6a69
|
105 |
x3=(j->x-jp->x)*(vtx->x-jp->x)+ |
SP |
106 |
(j->y-jp->y)*(vtx->y-jp->y)+ |
|
107 |
(j->z-jp->z)*(vtx->z-jp->z); |
d7639a
|
108 |
|
SP |
109 |
#ifdef TS_DOUBLE_DOUBLE |
|
110 |
ctp=x3/sqrt(x1*x2-x3*x3); |
|
111 |
#endif |
|
112 |
#ifdef TS_DOUBLE_FLOAT |
|
113 |
ctp=x3/sqrtf(x1*x2-x3*x3); |
|
114 |
#endif |
|
115 |
#ifdef TS_DOUBLE_LONGDOUBLE |
|
116 |
ctp=x3/sqrtl(x1*x2-x3*x3); |
|
117 |
#endif |
f74313
|
118 |
x1=vtx_distance_sq(vtx,jm); |
SP |
119 |
x2=vtx_distance_sq(j,jm); |
8f6a69
|
120 |
x3=(j->x-jm->x)*(vtx->x-jm->x)+ |
SP |
121 |
(j->y-jm->y)*(vtx->y-jm->y)+ |
|
122 |
(j->z-jm->z)*(vtx->z-jm->z); |
d7639a
|
123 |
#ifdef TS_DOUBLE_DOUBLE |
SP |
124 |
ctm=x3/sqrt(x1*x2-x3*x3); |
|
125 |
#endif |
|
126 |
#ifdef TS_DOUBLE_FLOAT |
|
127 |
ctm=x3/sqrtf(x1*x2-x3*x3); |
|
128 |
#endif |
|
129 |
#ifdef TS_DOUBLE_LONGDOUBLE |
|
130 |
ctm=x3/sqrtl(x1*x2-x3*x3); |
|
131 |
#endif |
|
132 |
tot=ctp+ctm; |
|
133 |
tot=0.5*tot; |
a63f17
|
134 |
|
f74313
|
135 |
xlen=vtx_distance_sq(j,vtx); |
a63f17
|
136 |
/* |
d7639a
|
137 |
#ifdef TS_DOUBLE_DOUBLE |
8f6a69
|
138 |
vtx->bond[jj-1]->bond_length=sqrt(xlen); |
d7639a
|
139 |
#endif |
SP |
140 |
#ifdef TS_DOUBLE_FLOAT |
8f6a69
|
141 |
vtx->bond[jj-1]->bond_length=sqrtf(xlen); |
d7639a
|
142 |
#endif |
SP |
143 |
#ifdef TS_DOUBLE_LONGDOUBLE |
8f6a69
|
144 |
vtx->bond[jj-1]->bond_length=sqrtl(xlen); |
d7639a
|
145 |
#endif |
SP |
146 |
|
8f6a69
|
147 |
vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length; |
a63f17
|
148 |
*/ |
d7639a
|
149 |
s+=tot*xlen; |
8f6a69
|
150 |
xh+=tot*(j->x - vtx->x); |
SP |
151 |
yh+=tot*(j->y - vtx->y); |
|
152 |
zh+=tot*(j->z - vtx->z); |
41a035
|
153 |
txn+=jt->xnorm; |
SP |
154 |
tyn+=jt->ynorm; |
|
155 |
tzn+=jt->znorm; |
d7639a
|
156 |
} |
SP |
157 |
|
|
158 |
h=xh*xh+yh*yh+zh*zh; |
|
159 |
ht=txn*xh+tyn*yh + tzn*zh; |
|
160 |
s=s/4.0; |
|
161 |
#ifdef TS_DOUBLE_DOUBLE |
|
162 |
if(ht>=0.0) { |
8f6a69
|
163 |
vtx->curvature=sqrt(h); |
d7639a
|
164 |
} else { |
8f6a69
|
165 |
vtx->curvature=-sqrt(h); |
d7639a
|
166 |
} |
SP |
167 |
#endif |
|
168 |
#ifdef TS_DOUBLE_FLOAT |
|
169 |
if(ht>=0.0) { |
8f6a69
|
170 |
vtx->curvature=sqrtf(h); |
d7639a
|
171 |
} else { |
8f6a69
|
172 |
vtx->curvature=-sqrtf(h); |
d7639a
|
173 |
} |
SP |
174 |
#endif |
|
175 |
#ifdef TS_DOUBLE_LONGDOUBLE |
|
176 |
if(ht>=0.0) { |
8f6a69
|
177 |
vtx->curvature=sqrtl(h); |
d7639a
|
178 |
} else { |
8f6a69
|
179 |
vtx->curvature=-sqrtl(h); |
d7639a
|
180 |
} |
SP |
181 |
#endif |
dac2e5
|
182 |
// c is forced curvature energy for each vertex. Should be set to zero for |
8f6a69
|
183 |
// normal circumstances. |
SP |
184 |
vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c); |
d7639a
|
185 |
|
SP |
186 |
return TS_SUCCESS; |
|
187 |
} |